dc.contributor.author |
Tsiourvas, D |
en |
dc.contributor.author |
Tsetsekou, A |
en |
dc.contributor.author |
Arkas, M |
en |
dc.contributor.author |
Diplas, S |
en |
dc.contributor.author |
Mastrogianni, E |
en |
dc.date.accessioned |
2014-03-01T01:35:28Z |
|
dc.date.available |
2014-03-01T01:35:28Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.issn |
0957-4530 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/21064 |
|
dc.subject |
Calcium Phosphate |
en |
dc.subject |
Hydroxyapatite |
en |
dc.subject |
Surface Morphology |
en |
dc.subject |
Titanium |
en |
dc.subject |
Poly Ethylene Imine |
en |
dc.subject |
Simulated Body Fluid |
en |
dc.subject.classification |
Engineering, Biomedical |
en |
dc.subject.classification |
Materials Science, Biomaterials |
en |
dc.subject.other |
Biomimetic growth |
en |
dc.subject.other |
Calcium phosphate formation |
en |
dc.subject.other |
Chemical grafting |
en |
dc.subject.other |
Chemical pre-treatment |
en |
dc.subject.other |
Coating layer |
en |
dc.subject.other |
Covalent attachment |
en |
dc.subject.other |
Deposition stages |
en |
dc.subject.other |
FTIR |
en |
dc.subject.other |
Hybrid layer |
en |
dc.subject.other |
Hyperbranched |
en |
dc.subject.other |
Organosilicones |
en |
dc.subject.other |
Poly(ethyleneimine) |
en |
dc.subject.other |
Polymeric layers |
en |
dc.subject.other |
Reaction conditions |
en |
dc.subject.other |
Reaction steps |
en |
dc.subject.other |
SEM |
en |
dc.subject.other |
Simulated body fluids |
en |
dc.subject.other |
Surface silanization |
en |
dc.subject.other |
Titanium surfaces |
en |
dc.subject.other |
XPS analysis |
en |
dc.subject.other |
Biomaterials |
en |
dc.subject.other |
Biomimetics |
en |
dc.subject.other |
Calcium phosphate |
en |
dc.subject.other |
Ethylene |
en |
dc.subject.other |
Functional polymers |
en |
dc.subject.other |
Grafts |
en |
dc.subject.other |
Hydroxyapatite |
en |
dc.subject.other |
Nitrogen compounds |
en |
dc.subject.other |
Phosphate coatings |
en |
dc.subject.other |
Polymers |
en |
dc.subject.other |
Protective coatings |
en |
dc.subject.other |
Reaction intermediates |
en |
dc.subject.other |
Surface morphology |
en |
dc.subject.other |
Surface reactions |
en |
dc.subject.other |
Titanium |
en |
dc.subject.other |
Grafting (chemical) |
en |
dc.subject.other |
biomimetic material |
en |
dc.subject.other |
calcium phosphate |
en |
dc.subject.other |
hydroxyapatite |
en |
dc.subject.other |
polyethyleneimine |
en |
dc.subject.other |
titanium |
en |
dc.subject.other |
article |
en |
dc.subject.other |
body fluid |
en |
dc.subject.other |
controlled study |
en |
dc.subject.other |
infrared spectroscopy |
en |
dc.subject.other |
material coating |
en |
dc.subject.other |
priority journal |
en |
dc.subject.other |
scanning electron microscopy |
en |
dc.subject.other |
simulation |
en |
dc.subject.other |
X ray photoelectron spectroscopy |
en |
dc.subject.other |
Biomimetic Materials |
en |
dc.subject.other |
Body Fluids |
en |
dc.subject.other |
Calcium Phosphates |
en |
dc.subject.other |
Coated Materials, Biocompatible |
en |
dc.subject.other |
Crystallization |
en |
dc.subject.other |
Hydrogen Bonding |
en |
dc.subject.other |
Materials Testing |
en |
dc.subject.other |
Microscopy, Electron, Scanning |
en |
dc.subject.other |
Models, Biological |
en |
dc.subject.other |
Polyethyleneimine |
en |
dc.subject.other |
Polymers |
en |
dc.subject.other |
Spectrometry, X-Ray Emission |
en |
dc.subject.other |
Spectroscopy, Fourier Transform Infrared |
en |
dc.subject.other |
Surface Properties |
en |
dc.subject.other |
Titanium |
en |
dc.title |
Covalent attachment of a bioactive hyperbranched polymeric layer to titanium surface for the biomimetic growth of calcium phosphates |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s10856-010-4181-7 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s10856-010-4181-7 |
en |
heal.language |
English |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
This work is investigating the chemical grafting on Ti surface of a polymer/calcium phosphate coating of improved adhesion for enhanced bioactivity. For this purpose, a whole new methodology was developed based on covalently attaching a hyperbranched poly(ethylene imine) layer on Ti surface able to promote calcium phosphate formation in a next deposition stage. This was achieved through an intermediate surface silanization step. The research included optimization both of the reaction conditions for covalently grafting the intermediate organosilicon and the subsequent hyperbranched poly(ethylene imine) layers, as well as of the conditions for the mechanical and chemical pretreatment of Ti surface before coating. The reaction steps were monitored employing FTIR and XPS analyses, whereas the surface morphology and structure of the successive coating layers were studied by SEM combined with EDS. The analysis confirmed the successful grafting of the hybrid layer which demonstrated very good ability for hydroxyapatite growth in simulated body fluid. © 2010 The Author(s). |
en |
heal.publisher |
SPRINGER |
en |
heal.journalName |
Journal of Materials Science: Materials in Medicine |
en |
dc.identifier.doi |
10.1007/s10856-010-4181-7 |
en |
dc.identifier.isi |
ISI:000288516300009 |
en |
dc.identifier.volume |
22 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
85 |
en |
dc.identifier.epage |
96 |
en |