HEAL DSpace

Developing fragility curves based on neural network IDA predictions

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Mitropoulou, CC en
dc.contributor.author Papadrakakis, M en
dc.date.accessioned 2014-03-01T01:35:30Z
dc.date.available 2014-03-01T01:35:30Z
dc.date.issued 2011 en
dc.identifier.issn 0141-0296 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/21083
dc.subject Fragility analysis en
dc.subject Harmony search en
dc.subject Incremental dynamic analysis en
dc.subject Neural networks en
dc.subject Reinforced concrete buildings en
dc.subject Vertical statistics en
dc.subject.classification Engineering, Civil en
dc.subject.other 3D reinforced concrete en
dc.subject.other Accurate prediction en
dc.subject.other Algorithmic solutions en
dc.subject.other Computational effort en
dc.subject.other Computational time en
dc.subject.other Computing system en
dc.subject.other Fragility analysis en
dc.subject.other Fragility assessment en
dc.subject.other Fragility curves en
dc.subject.other Harmony search en
dc.subject.other Incremental dynamic analysis en
dc.subject.other Structural response en
dc.subject.other Structural systems en
dc.subject.other Vertical statistics en
dc.subject.other Algorithms en
dc.subject.other Concrete buildings en
dc.subject.other Concrete construction en
dc.subject.other Dynamic analysis en
dc.subject.other Forecasting en
dc.subject.other Reinforced concrete en
dc.subject.other Soft computing en
dc.subject.other Three dimensional en
dc.subject.other Neural networks en
dc.subject.other architectural design en
dc.subject.other artificial neural network en
dc.subject.other concrete structure en
dc.subject.other dynamic analysis en
dc.subject.other prediction en
dc.subject.other reinforced concrete en
dc.subject.other statistical analysis en
dc.subject.other structural response en
dc.title Developing fragility curves based on neural network IDA predictions en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.engstruct.2011.07.005 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.engstruct.2011.07.005 en
heal.language English en
heal.publicationDate 2011 en
heal.abstract A Soft Computing (SC) based framework for the fragility assessment of 3D buildings is proposed in this work. The computational effort required for a fragility analysis of structural systems can become excessive, far beyond the capability of modern computing systems, especially when dealing with real-world structures. For the purpose of making attainable fragility analyses, a Neural Network (NN) implementation is presented in this work, which can provide accurate predictions of the structural response at a fraction of computational time required by a conventional analysis. The main advantage of using NN predictions is that they can deal with problems, without having an algorithmic solution or with an algorithmic solution that is too complex to be found. The proposed methodology is applied to 3D reinforced concrete buildings where it was found that with the proposed implementation of NN, a reduction of one order of magnitude is achieved in the computational effort for performing a full fragility analysis. (C) 2011 Elsevier Ltd. All rights reserved. en
heal.publisher ELSEVIER SCI LTD en
heal.journalName Engineering Structures en
dc.identifier.doi 10.1016/j.engstruct.2011.07.005 en
dc.identifier.isi ISI:000297823200028 en
dc.identifier.volume 33 en
dc.identifier.issue 12 en
dc.identifier.spage 3409 en
dc.identifier.epage 3421 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής