dc.contributor.author |
Andreadis, P |
en |
dc.contributor.author |
Zompanakis, A |
en |
dc.contributor.author |
Chryssakis, C |
en |
dc.contributor.author |
Kaiktsis, L |
en |
dc.date.accessioned |
2014-03-01T01:35:37Z |
|
dc.date.available |
2014-03-01T01:35:37Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.issn |
1468-0874 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/21123 |
|
dc.subject |
computational fluid dynamics |
en |
dc.subject |
evolutionary algorithms |
en |
dc.subject |
marine diesel engines |
en |
dc.subject |
multiple injections |
en |
dc.subject |
optimization |
en |
dc.subject.other |
Automotive engine |
en |
dc.subject.other |
Computational Fluid Dynamics codes |
en |
dc.subject.other |
Computational studies |
en |
dc.subject.other |
Constraint problems |
en |
dc.subject.other |
Design variables |
en |
dc.subject.other |
Engine optimization |
en |
dc.subject.other |
Full-load |
en |
dc.subject.other |
Injection parameters |
en |
dc.subject.other |
Injection profile |
en |
dc.subject.other |
marine diesel engines |
en |
dc.subject.other |
Maximum cylinder pressure |
en |
dc.subject.other |
Maximum pressure |
en |
dc.subject.other |
Multi objective |
en |
dc.subject.other |
multiple injections |
en |
dc.subject.other |
Objective functions |
en |
dc.subject.other |
Oil consumption |
en |
dc.subject.other |
Optimum solution |
en |
dc.subject.other |
Parameterizing |
en |
dc.subject.other |
Performance and emissions |
en |
dc.subject.other |
Pilot injection |
en |
dc.subject.other |
Set-ups |
en |
dc.subject.other |
Three problems |
en |
dc.subject.other |
Two-stroke marine diesel engines |
en |
dc.subject.other |
Work output |
en |
dc.subject.other |
Computational fluid dynamics |
en |
dc.subject.other |
Engine cylinders |
en |
dc.subject.other |
Evolutionary algorithms |
en |
dc.subject.other |
Fluid dynamics |
en |
dc.subject.other |
Fluids |
en |
dc.subject.other |
Fuel injection |
en |
dc.subject.other |
Fuel oils |
en |
dc.subject.other |
Fuels |
en |
dc.subject.other |
Marine engines |
en |
dc.subject.other |
Multiobjective optimization |
en |
dc.subject.other |
Nitric oxide |
en |
dc.subject.other |
Nitrogen oxides |
en |
dc.subject.other |
Sensitivity analysis |
en |
dc.subject.other |
Diesel engines |
en |
dc.title |
Effects of the fuel injection parameters on the performance and emissions formation in a large-bore marine diesel engine |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1243/14680874JER511 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1243/14680874JER511 |
en |
heal.language |
English |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
Reductions in the emissions of nitrogen oxides (NOx) and soot from marine diesel engines can be supported by employing multiple-injection strategies, similar to those used in automotive engines. In the present computational study, the possibility of improving the operation of a large two-stroke marine diesel engine at full load by implementing an appropriate pilot injection is explored. A KIVA-3-based computational fluid dynamics code is used, coupled with an evolutionary algorithm. Multi-objective engine optimization is performed by parameterizing the fuel injection profiles in terms of four design variables, which fully define the pilot and main injections. Two objective functions are defined: the final NOx concentration and the specific fuel oil consumption (SFOC), both normalized by the corresponding values of a reference case of continuous injection. Three problem set-ups have been considered: first, an unconstrained problem; second, a problem constrained by the maximum cylinder pressure; third, a problem constrained by both the maximum pressure and the minimum work output per engine cycle. It is found that, in both the unconstrained and the one-constraint problems, the optimum solutions are characterized by substantial improvements in the NOx emissions (of the order of 15-20 per cent) and the SFOC (of the order of 2 per cent). The improvements are less pronounced when both constraints are imposed. A detailed sensitivity analysis of the effects of each of the design variables is presented. © Authors 2011. |
en |
heal.publisher |
PROFESSIONAL ENGINEERING PUBLISHING LTD |
en |
heal.journalName |
International Journal of Engine Research |
en |
dc.identifier.doi |
10.1243/14680874JER511 |
en |
dc.identifier.isi |
ISI:000287231600002 |
en |
dc.identifier.volume |
12 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
14 |
en |
dc.identifier.epage |
29 |
en |