dc.contributor.author |
Fikioris, G |
en |
dc.contributor.author |
Papakanellos, PJ |
en |
dc.contributor.author |
Mavrogordatos, TK |
en |
dc.contributor.author |
Lafkas, N |
en |
dc.contributor.author |
Koulikas, D |
en |
dc.date.accessioned |
2014-03-01T01:35:38Z |
|
dc.date.available |
2014-03-01T01:35:38Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.issn |
0036-1399 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/21130 |
|
dc.subject |
Fredholm integral equation |
en |
dc.subject |
Hallén |
en |
dc.subject |
Pocklington |
en |
dc.subject |
Wire antenna |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.other |
Antenna theory |
en |
dc.subject.other |
Asymptotic study |
en |
dc.subject.other |
Current distribution |
en |
dc.subject.other |
Delta-function generator |
en |
dc.subject.other |
Driving points |
en |
dc.subject.other |
Fredholm integral equations |
en |
dc.subject.other |
Galerkin |
en |
dc.subject.other |
Linear antennas |
en |
dc.subject.other |
Oscillating current |
en |
dc.subject.other |
Pocklington |
en |
dc.subject.other |
Wire antenna |
en |
dc.subject.other |
Delta functions |
en |
dc.subject.other |
Function generators |
en |
dc.subject.other |
Integral equations |
en |
dc.subject.other |
Magnetic fields |
en |
dc.subject.other |
Numerical methods |
en |
dc.subject.other |
Antennas |
en |
dc.title |
Eliminating unphysical oscillations arising in galerkin solutions to classical integral equations of antenna theory: An asymptotic study* |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1137/100785727 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1137/100785727 |
en |
heal.language |
English |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
Previous works have discussed in detail the difficulties occurring when one applies numerical methods to Hallén's and Pocklington's integral equations for the current distribution along a linear antenna. When the so-called approximate kernel is used, the main difficulty is the appearance of unphysical oscillations near the driving point and/or near the ends of the antenna. Another work has proposed an easy-to-apply, possible remedy to overcome these unnatural oscillations. The basic idea is to define a new current from the near magnetic field produced by the original oscillating current. In the present paper, for the case of an antenna center-driven by a delta-function generator, we place this remedy on a much firmer basis by means of an asymptotic study for the case of the linear antenna of infinite length. We provide specific connections of our study to actual finite-length antennas. © 2011 Society for Industrial and Applied Mathematics. |
en |
heal.publisher |
SIAM PUBLICATIONS |
en |
heal.journalName |
SIAM Journal on Applied Mathematics |
en |
dc.identifier.doi |
10.1137/100785727 |
en |
dc.identifier.isi |
ISI:000289974400008 |
en |
dc.identifier.volume |
71 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
559 |
en |
dc.identifier.epage |
585 |
en |