dc.contributor.author |
Balomenos, E |
en |
dc.contributor.author |
Panias, D |
en |
dc.contributor.author |
Paspaliaris, I |
en |
dc.date.accessioned |
2014-03-01T01:35:38Z |
|
dc.date.available |
2014-03-01T01:35:38Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.issn |
0882-7508 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/21134 |
|
dc.subject |
chemical exergy analysis |
en |
dc.subject |
energy and exergy efficiency |
en |
dc.subject |
primary aluminum production |
en |
dc.subject.classification |
Metallurgy & Metallurgical Engineering |
en |
dc.subject.classification |
Mining & Mineral Processing |
en |
dc.subject.other |
19th century |
en |
dc.subject.other |
Bayer process |
en |
dc.subject.other |
Chemical exergy |
en |
dc.subject.other |
Continuous optimization |
en |
dc.subject.other |
Energy and exergy analysis |
en |
dc.subject.other |
energy and exergy efficiency |
en |
dc.subject.other |
Environmental issues |
en |
dc.subject.other |
Industrial consumers |
en |
dc.subject.other |
Industrial practices |
en |
dc.subject.other |
On currents |
en |
dc.subject.other |
Primary aluminum |
en |
dc.subject.other |
Primary production |
en |
dc.subject.other |
Sustainable process |
en |
dc.subject.other |
Aluminum |
en |
dc.subject.other |
Aluminum metallography |
en |
dc.subject.other |
Aluminum metallurgy |
en |
dc.subject.other |
Carbon dioxide |
en |
dc.subject.other |
Energy conversion |
en |
dc.subject.other |
Exergy |
en |
dc.subject.other |
Industry |
en |
dc.subject.other |
Chemical analysis |
en |
dc.title |
Energy and exergy analysis of the primary aluminum production processes: A review on current and future sustainability |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1080/08827508.2010.530721 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1080/08827508.2010.530721 |
en |
heal.language |
English |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
The common industrial practice for primary aluminum production consists of the Bayer process for the production of alumina followed by the Hall-Heroult process for the production of aluminum. Both processes were developed at the end of the 19th century and despite continuous optimization, their basic thermodynamic inefficiencies and environmental issues remain till today unchanged. As a result, primary aluminum production industry is the world's larger industrial consumer of energy, is ranked among the most CO2 intensive industries, and is associated with the generation of enormous quantities of solid wastes. In this paper a detail energy and exergy analysis of the primary production of aluminum is presented and alternative sustainable processes are reviewed. Copyright © Taylor & Francis Group, LLC. |
en |
heal.publisher |
TAYLOR & FRANCIS INC |
en |
heal.journalName |
Mineral Processing and Extractive Metallurgy Review |
en |
dc.identifier.doi |
10.1080/08827508.2010.530721 |
en |
dc.identifier.isi |
ISI:000288266400001 |
en |
dc.identifier.volume |
32 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
69 |
en |
dc.identifier.epage |
89 |
en |