dc.contributor.author |
Siettos, CI |
en |
dc.date.accessioned |
2014-03-01T01:35:38Z |
|
dc.date.available |
2014-03-01T01:35:38Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.issn |
0096-3003 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/21138 |
|
dc.subject |
Bifurcation analysis |
en |
dc.subject |
Complex systems |
en |
dc.subject |
Individual-based epidemic models |
en |
dc.subject |
Multiscale computations |
en |
dc.subject |
Networks |
en |
dc.subject |
Pair-wise correlations |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.other |
Bifurcation analysis |
en |
dc.subject.other |
Bifurcation diagram |
en |
dc.subject.other |
Black boxes |
en |
dc.subject.other |
Coarse-grained |
en |
dc.subject.other |
Complex networks |
en |
dc.subject.other |
Computational analysis |
en |
dc.subject.other |
Computational methodology |
en |
dc.subject.other |
Connected graph |
en |
dc.subject.other |
Epidemic dynamics |
en |
dc.subject.other |
Epidemic models |
en |
dc.subject.other |
Equation-Free |
en |
dc.subject.other |
Individual-based |
en |
dc.subject.other |
Long-term prediction |
en |
dc.subject.other |
Macroscopic levels |
en |
dc.subject.other |
Multiscale computations |
en |
dc.subject.other |
Multiscales |
en |
dc.subject.other |
Numerical bifurcation analysis |
en |
dc.subject.other |
Optimization method |
en |
dc.subject.other |
Pair-wise correlations |
en |
dc.subject.other |
SIRS epidemic model |
en |
dc.subject.other |
Stationary state |
en |
dc.subject.other |
Steady state |
en |
dc.subject.other |
System-level analysis |
en |
dc.subject.other |
Time-dependent computations |
en |
dc.subject.other |
Timestepper |
en |
dc.subject.other |
Bifurcation (mathematics) |
en |
dc.subject.other |
Computer simulation |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Simulated annealing |
en |
dc.subject.other |
Disease control |
en |
dc.title |
Equation-Free multiscale computational analysis of individual-based epidemic dynamics on networks |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.amc.2011.05.067 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.amc.2011.05.067 |
en |
heal.language |
English |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
The surveillance, analysis and ultimately the efficient long-term prediction and control of epidemic dynamics appear to be some of the major challenges nowadays. Detailed individual-based mathematical models on complex networks play an important role towards this aim. In this work, it is shown how one can exploit the Equation-Free approach and optimization methods such as Simulated Annealing to bridge detailed individual-based epidemic models with coarse-grained, system-level analysis within a pair-wise representation perspective. The proposed computational methodology provides a systematic approach for analyzing the parametric behavior of complex/multiscale epidemic simulators much more efficiently than simply simulating forward in time. It is shown how steady state and (if required) time-dependent computations, stability computations, as well as continuation and numerical bifurcation analysis can be performed in a straightforward manner. The approach is illustrated through a simple individual-based SIRS epidemic model deploying on a random regular connected graph. Using the individual-based simulator as a black box coarse-grained timestepper and with the aid of Simulated Annealing I compute the coarse-grained equilibrium bifurcation diagram and analyze the stability of the stationary states sidestepping the necessity of obtaining explicit closures at the macroscopic level. (C) 2011 Elsevier Inc. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCIENCE INC |
en |
heal.journalName |
Applied Mathematics and Computation |
en |
dc.identifier.doi |
10.1016/j.amc.2011.05.067 |
en |
dc.identifier.isi |
ISI:000293009400012 |
en |
dc.identifier.volume |
218 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
324 |
en |
dc.identifier.epage |
336 |
en |