HEAL DSpace

Evaluation of ASCE-41, ATC-40 and N2 static pushover methods based on optimally designed buildings

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Lagaros, ND en
dc.contributor.author Fragiadakis, M en
dc.date.accessioned 2014-03-01T01:35:39Z
dc.date.available 2014-03-01T01:35:39Z
dc.date.issued 2011 en
dc.identifier.issn 0267-7261 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/21143
dc.subject Capacity Spectrum Method en
dc.subject Comparative Study en
dc.subject Life Cycle Cost en
dc.subject Nonlinear Response en
dc.subject Optimal Algorithm en
dc.subject Optimal Design en
dc.subject Performance Assessment en
dc.subject Performance Based Design en
dc.subject Reinforced Concrete en
dc.subject Seismic Design en
dc.subject Static and Dynamic Analysis en
dc.subject Incremental Dynamic Analysis en
dc.subject Lower Bound en
dc.subject.classification Engineering, Geological en
dc.subject.classification Geosciences, Multidisciplinary en
dc.subject.other Alternative approach en
dc.subject.other Analysis method en
dc.subject.other Capacity spectrum method en
dc.subject.other Coefficient methods en
dc.subject.other Comparative studies en
dc.subject.other Computational tools en
dc.subject.other Damage costs en
dc.subject.other Design life en
dc.subject.other Drift demands en
dc.subject.other Eurocode 8 en
dc.subject.other Existing structure en
dc.subject.other Incremental dynamic analysis en
dc.subject.other Lifecycle costs en
dc.subject.other Lower bounds en
dc.subject.other N2 method en
dc.subject.other New structures en
dc.subject.other Nonlinear response history analysis en
dc.subject.other Optimization algorithms en
dc.subject.other Optimum performance en
dc.subject.other Performance assessment en
dc.subject.other Pros and cons en
dc.subject.other Pushover method en
dc.subject.other Research studies en
dc.subject.other Static and dynamic analysis en
dc.subject.other Concrete buildings en
dc.subject.other Concrete construction en
dc.subject.other Dynamic analysis en
dc.subject.other Laws and legislation en
dc.subject.other Reinforced concrete en
dc.subject.other Seismic design en
dc.subject.other Design en
dc.subject.other algorithm en
dc.subject.other building en
dc.subject.other displacement en
dc.subject.other dynamic analysis en
dc.subject.other dynamic response en
dc.subject.other earthquake engineering en
dc.subject.other optimization en
dc.subject.other reinforced concrete en
dc.subject.other seismic design en
dc.title Evaluation of ASCE-41, ATC-40 and N2 static pushover methods based on optimally designed buildings en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.soildyn.2010.08.007 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.soildyn.2010.08.007 en
heal.language English en
heal.publicationDate 2011 en
heal.abstract Alternative static pushover methods for the seismic design of new structures are assessed with the aid of advanced computational tools. The current state-of-practice static pushover methods as suggested in the provisions of European and American regulations are implemented in this comparative study. In particular the static pushover methods are: the displacement coefficient method of ASCE-41, the ATC-40 capacity spectrum method and the N2 method of Eurocode 8. Such analysis methods are typically recommended for the performance assessment of existing structures, and therefore most of the existing comparative studies are focused on the performance of one or more structures. Therefore, contrary to previous research studies, we use static pushover methods to perform design and we then compare the capacity of the outcome designs with reference to the results of nonlinear response history analysis. This alternative approach pinpoints the pros and cons of each method since the discrepancies between static and dynamic analysis are propagated to the properties of the final structure. All methods are implemented in an optimum performance-based design framework to obtain the lower-bound designs for two regular and two irregular reinforced concrete building configurations. The outcome designs are compared with respect to the maximum interstorey drift and maximum roof drift demand obtained with the Incremental Dynamic Analysis method. To allow the comparison, also the life-cycle cost of each design is calculated; i.e. a parameter that is used to measure the damage cost due to future earthquakes that will occur during the design life of the structure. The problem of finding the lower bound designs is handled with an Evolutionary type optimization algorithm. (C) 2010 Elsevier Ltd. All rights reserved. en
heal.publisher ELSEVIER SCI LTD en
heal.journalName Soil Dynamics and Earthquake Engineering en
dc.identifier.doi 10.1016/j.soildyn.2010.08.007 en
dc.identifier.isi ISI:000283686100007 en
dc.identifier.volume 31 en
dc.identifier.issue 1 en
dc.identifier.spage 77 en
dc.identifier.epage 90 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής