dc.contributor.author |
Vaitsi, ST |
en |
dc.contributor.author |
Salmas, CE |
en |
dc.contributor.author |
Tsapekis, OG |
en |
dc.contributor.author |
Katsoulidis, AP |
en |
dc.contributor.author |
Androutsopoulos, GP |
en |
dc.date.accessioned |
2014-03-01T01:35:39Z |
|
dc.date.available |
2014-03-01T01:35:39Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.issn |
0378-3820 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/21146 |
|
dc.subject |
Anodic alumina |
en |
dc.subject |
Gas permeance |
en |
dc.subject |
Knudsen diffusion |
en |
dc.subject |
Permeability |
en |
dc.subject |
Permselectivity |
en |
dc.subject |
Pore membrane |
en |
dc.subject.classification |
Chemistry, Applied |
en |
dc.subject.classification |
Energy & Fuels |
en |
dc.subject.classification |
Engineering, Chemical |
en |
dc.subject.other |
Anodic alumina |
en |
dc.subject.other |
Gas permeance |
en |
dc.subject.other |
Knudsen diffusion |
en |
dc.subject.other |
Permselectivities |
en |
dc.subject.other |
Pore membrane |
en |
dc.subject.other |
Aluminum |
en |
dc.subject.other |
Aluminum sheet |
en |
dc.subject.other |
Anodic oxidation |
en |
dc.subject.other |
Bioreactors |
en |
dc.subject.other |
Carbon dioxide |
en |
dc.subject.other |
Carbon monoxide |
en |
dc.subject.other |
Gas permeability |
en |
dc.subject.other |
Hydrothermal synthesis |
en |
dc.subject.other |
Permselective membranes |
en |
dc.subject.other |
Pore structure |
en |
dc.subject.other |
Sorption |
en |
dc.subject.other |
Synthesis gas |
en |
dc.subject.other |
Gas permeable membranes |
en |
dc.title |
Evaluation of hydrogen permselective separation from ""synthesis gas"" components based on single gas permeability measurements on anodic alumina membranes |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.fuproc.2011.07.024 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.fuproc.2011.07.024 |
en |
heal.language |
English |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
Anodic alumina membranes were prepared by anodizing aluminum followed by chemical and hydrothermal treatments. Anodization was performed on both tube surfaces. External anodization was restricted to selected spots leaving an aluminum mechanically strong frame. Nitrogen sorption data analysed with the CPSM method (Corrugated Pore Structure Model) detected a mesopore structure (i.e. D-mean.,15-20) and surface areas of 2-20 m(2)/g. SEM microscopy images revealed a regular pore structure of independent pores with densities of N-pore similar to 5.6 x 10(14) pores/m(2). Single gas permeances (Pi) for X: H-2, CH4, CO and CO2 were measured on a Wicke-Kallenbach apparatus at varying mean transmembrane pressure P-m by the "dead-end" method. The observed slight dependence of Pi on P-m is indicative of strong Knudsen diffusion and weak viscous flow contributions. By correlating the experimental data with a linear Pi vs P-m relationship, Knudsen contribution evaluation was enabled, and found to vary in the range K-C approximate to 0.7-1.0. The Knudsen number criterion for flow regime discrimination is critically discussed and a realistic dual Knudsen number approach is proposed. Experimental permselectivities (alpha(H2X) = Pi(H2)/Pi(X) (X not equal H-2) approach by 70-100% their Knudsen selectivity counterparts. Anodic alumina membranes exhibit pore structure and gas permeability characteristics useful in designing integrated gas separation and catalytic membrane reactor systems. (C) 2011 Elsevier B.V. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCIENCE BV |
en |
heal.journalName |
Fuel Processing Technology |
en |
dc.identifier.doi |
10.1016/j.fuproc.2011.07.024 |
en |
dc.identifier.isi |
ISI:000297873500024 |
en |
dc.identifier.volume |
92 |
en |
dc.identifier.issue |
12 |
en |
dc.identifier.spage |
2375 |
en |
dc.identifier.epage |
2388 |
en |