dc.contributor.author |
Anyfantis, KN |
en |
dc.contributor.author |
Tsouvalis, NG |
en |
dc.date.accessioned |
2014-03-01T01:35:40Z |
|
dc.date.available |
2014-03-01T01:35:40Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.issn |
0731-6844 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/21153 |
|
dc.subject |
cohesive zone modeling |
en |
dc.subject |
composites |
en |
dc.subject |
delamination growth |
en |
dc.subject |
interface |
en |
dc.subject |
Mode II fracture |
en |
dc.subject.classification |
Materials Science, Composites |
en |
dc.subject.classification |
Polymer Science |
en |
dc.subject.other |
Cohesive-zone modeling |
en |
dc.subject.other |
composites |
en |
dc.subject.other |
delamination growth |
en |
dc.subject.other |
interface |
en |
dc.subject.other |
Mode II fracture |
en |
dc.subject.other |
Crack propagation |
en |
dc.subject.other |
Crack tips |
en |
dc.subject.other |
Data reduction |
en |
dc.subject.other |
Delamination |
en |
dc.subject.other |
Growth (materials) |
en |
dc.subject.other |
Steel sheet |
en |
dc.subject.other |
Traction (friction) |
en |
dc.subject.other |
Computer simulation |
en |
dc.title |
Experimental and numerical investigation of Mode II fracture in fibrous reinforced composites |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1177/0731684410397682 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1177/0731684410397682 |
en |
heal.language |
English |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
A straightforward procedure is described for utilizing experimentally evaluated bridging laws that characterize Mode II fracture growth of composite materials into numerical simulations. Unidirectional glass/epoxy end notch flexure (ENF) coupons have been fabricated and tested. Three data reduction schemes available in the literature were used for the construction of the R-curves together with the J-integral approach for the derivation of the bridging laws. Two traction- separation models have been utilized for the characterization of the fracture process zone (FPZ) developing during the delamination propagation process. The first model considers only the existence of a bridging zone behind the physical crack tip, whereas the proposed model considers both the existence of a bridging zone and of a cohesive zone in front of the physical crack tip. The traction-separation models were implemented into interface elements for the simulation of the ENF tests. Numerical results have shown that the proposed procedure together with the proposed traction- separation model is quite promising for simulations that involve Mode II fracture growth. © The Author(s) 2011. |
en |
heal.publisher |
SAGE PUBLICATIONS LTD |
en |
heal.journalName |
Journal of Reinforced Plastics and Composites |
en |
dc.identifier.doi |
10.1177/0731684410397682 |
en |
dc.identifier.isi |
ISI:000289972100002 |
en |
dc.identifier.volume |
30 |
en |
dc.identifier.issue |
6 |
en |
dc.identifier.spage |
473 |
en |
dc.identifier.epage |
487 |
en |