dc.contributor.author |
Grigoropoulos, GJ |
en |
dc.contributor.author |
Katsikis, C |
en |
dc.contributor.author |
Chalkias, DS |
en |
dc.date.accessioned |
2014-03-01T01:35:40Z |
|
dc.date.available |
2014-03-01T01:35:40Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.issn |
2092-6782 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/21160 |
|
dc.subject |
Model tests |
en |
dc.subject |
Non-linearity |
en |
dc.subject |
Panel method |
en |
dc.subject |
Seakeeping |
en |
dc.subject |
Time-domain |
en |
dc.subject.other |
Analytical results |
en |
dc.subject.other |
Experimental verification |
en |
dc.subject.other |
Geometrical complexity |
en |
dc.subject.other |
Geometrical modeling |
en |
dc.subject.other |
High-speed |
en |
dc.subject.other |
Hull forms |
en |
dc.subject.other |
Hydrostatic forces |
en |
dc.subject.other |
Linear codes |
en |
dc.subject.other |
Model tests |
en |
dc.subject.other |
Non-Linearity |
en |
dc.subject.other |
Nonlinear versions |
en |
dc.subject.other |
Numerical calculation |
en |
dc.subject.other |
Numerical predictions |
en |
dc.subject.other |
Panel codes |
en |
dc.subject.other |
Panel methods |
en |
dc.subject.other |
Time domain |
en |
dc.subject.other |
Transom stern |
en |
dc.subject.other |
Codes (symbols) |
en |
dc.subject.other |
Dynamic response |
en |
dc.subject.other |
Forecasting |
en |
dc.subject.other |
Hulls (ship) |
en |
dc.subject.other |
Hydraulics |
en |
dc.subject.other |
Hydrodynamics |
en |
dc.subject.other |
Seakeeping |
en |
dc.subject.other |
Time domain analysis |
en |
dc.title |
Experimental verification of the linear and non-linear versions of a panel code |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.3744/JNAOE.2011.3.1.027 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.3744/JNAOE.2011.3.1.027 |
en |
heal.language |
English |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
In the proposed paper numerical calculations are carried out using two versions of a three-dimensional, time-domain panel method developed by the group of Prof. P. Sclavounos at MIT, i.e. the linear code SWAN2, enabling optionally the use of the instantaneous non-linear Froude-Krylov and hydrostatic forces and the fully non-linear SWAN4. The analytical results are compared with experimental results for three hull forms with increasing geometrical complexity, the Series 60, a reefer vessel with stern bulb and a modern fast ROPAX hull form with hollow bottom in the stern region. The details of the geometrical modeling of the hull forms are discussed. In addition, since SWAN4 does not support transom sterns, only the two versions of SWAN2 were evaluated over experimental results for the parent hull form of the NTUA double-chine, wide-transom, high-speed monohull series. The effect of speed on the numerical predictions was investigated. It is concluded that both versions of SWAN2 the linear and the one with the non-linear Froude-Krylov and hydrostatic forces provide a more robust tool for prediction of the dynamic response of the vessels than the non-linear SWAN4 code. In general, their results are close to what was expected on the basis of experience. Furthermore, the use of the option of non-linear Froude-Krylov and hydrostatic forces is beneficial for the accuracy of the predictions. The content of the paper is based on the Diploma thesis of the second author, supervised by the first one and further refined by the third one. © SNAK, 2011. |
en |
heal.publisher |
SOC NAVAL ARCHITECTS KOREA |
en |
heal.journalName |
International Journal of Naval Architecture and Ocean Engineering |
en |
dc.identifier.doi |
10.3744/JNAOE.2011.3.1.027 |
en |
dc.identifier.isi |
ISI:000291127400004 |
en |
dc.identifier.volume |
3 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
27 |
en |
dc.identifier.epage |
36 |
en |