HEAL DSpace

Fuzzy UTASTAR: A method for discovering utility functions from fuzzy data

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Patiniotakis, I en
dc.contributor.author Apostolou, D en
dc.contributor.author Mentzas, G en
dc.date.accessioned 2014-03-01T01:35:45Z
dc.date.available 2014-03-01T01:35:45Z
dc.date.issued 2011 en
dc.identifier.issn 0957-4174 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/21182
dc.subject Fuzzy linear programming en
dc.subject Fuzzy numbers en
dc.subject Multiple criteria decision making en
dc.subject UTASTAR en
dc.subject Utility functions en
dc.subject.classification Computer Science, Artificial Intelligence en
dc.subject.classification Engineering, Electrical & Electronic en
dc.subject.classification Operations Research & Management Science en
dc.subject.other Fuzzy linear programming en
dc.subject.other Fuzzy numbers en
dc.subject.other Multiple criteria decision making en
dc.subject.other UTASTAR en
dc.subject.other Utility functions en
dc.subject.other Artificial intelligence en
dc.subject.other Decision making en
dc.subject.other Decision support systems en
dc.subject.other Fuzzy sets en
dc.subject.other Function evaluation en
dc.title Fuzzy UTASTAR: A method for discovering utility functions from fuzzy data en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.eswa.2011.06.014 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.eswa.2011.06.014 en
heal.language English en
heal.publicationDate 2011 en
heal.abstract We propose Fuzzy UTASTAR, a method for inferring fuzzy utility functions from a partial preorder of options evaluated on multiple criteria. It is an extension of the well-known UTASTAR method capable to handle both ordinary (crisp) and fuzzy evaluation data. This property gives much flexibility to decision makers because the majority of real-life decision problems involve a considerable level of uncertainty that hinders them from assigning exact evaluations (scores) to options. In case all evaluation data are crisp the method behaves exactly as the original UTASTAR. The proposed method builds fuzzy additive value functions taking as input a partial preorder on a subset of the options, called reference set, along with their associated scores on the criteria. The resulting fuzzy utility functions can subsequently be used to estimate the (fuzzy) utility of each option, thus allowing their ranking, prioritization, selection or classification. The ranking of the options in partial preorder is as compatible as possible to the original one. The method is implemented into a decision support system and is applied to an example from the transportation domain. Results are found to be in concordance with those of the original method. To the best of our knowledge this is the first attempt to extend UTASTAR method to handle both crisp and fuzzy evaluation data. (C) 2011 Elsevier Ltd. All rights reserved. en
heal.publisher PERGAMON-ELSEVIER SCIENCE LTD en
heal.journalName Expert Systems with Applications en
dc.identifier.doi 10.1016/j.eswa.2011.06.014 en
dc.identifier.isi ISI:000295193400117 en
dc.identifier.volume 38 en
dc.identifier.issue 12 en
dc.identifier.spage 15463 en
dc.identifier.epage 15474 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής