HEAL DSpace

Green's function of radial inhomogeneous spheres excited by internal sources

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Zouros, GP en
dc.contributor.author Kokkorakis, GC en
dc.date.accessioned 2014-03-01T01:35:46Z
dc.date.available 2014-03-01T01:35:46Z
dc.date.issued 2011 en
dc.identifier.issn 0001-4966 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/21188
dc.subject.classification Acoustics en
dc.subject.other Analytical evaluation en
dc.subject.other Elastic problems en
dc.subject.other Inhomogeneous density en
dc.subject.other Internal source en
dc.subject.other Numerical results en
dc.subject.other Volume integral equation en
dc.subject.other Compressibility en
dc.subject.other Differential equations en
dc.subject.other Spheres en
dc.subject.other Integral equations en
dc.subject.other acoustics en
dc.subject.other article en
dc.subject.other computer simulation en
dc.subject.other elasticity en
dc.subject.other electromagnetic field en
dc.subject.other mathematical computing en
dc.subject.other particle size en
dc.subject.other pressure en
dc.subject.other statistical model en
dc.subject.other theoretical model en
dc.subject.other Acoustics en
dc.subject.other Computer Simulation en
dc.subject.other Elasticity en
dc.subject.other Electromagnetic Phenomena en
dc.subject.other Linear Models en
dc.subject.other Models, Theoretical en
dc.subject.other Numerical Analysis, Computer-Assisted en
dc.subject.other Particle Size en
dc.subject.other Pressure en
dc.title Green's function of radial inhomogeneous spheres excited by internal sources en
heal.type journalArticle en
heal.identifier.primary 10.1121/1.3514519 en
heal.identifier.secondary http://dx.doi.org/10.1121/1.3514519 en
heal.language English en
heal.publicationDate 2011 en
heal.abstract Green's function in the interior of penetrable bodies with inhomogeneous compressibility by sources placed inside them is evaluated through a Schwinger-Lippmann volume integral equation. In the case of a radial inhomogeneous sphere, the radial part of the unknown Green's function can be expanded in a double Dini's series, which allows analytical evaluation of the involved cumbersome integrals. The simple case treated here can be extended to more difficult situations involving inhomogeneous density as well as to the corresponding electromagnetic or elastic problem. Finally, numerical results are given for various inhomogeneous compressibility distributions. (C) 2011 Acoustical Society of America. [DOI: 10.1121/1.3514519] en
heal.publisher ACOUSTICAL SOC AMER AMER INST PHYSICS en
heal.journalName Journal of the Acoustical Society of America en
dc.identifier.doi 10.1121/1.3514519 en
dc.identifier.isi ISI:000286944600010 en
dc.identifier.volume 129 en
dc.identifier.issue 1 en
dc.identifier.spage 24 en
dc.identifier.epage 31 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής