dc.contributor.author |
Zouros, GP |
en |
dc.contributor.author |
Kokkorakis, GC |
en |
dc.date.accessioned |
2014-03-01T01:35:46Z |
|
dc.date.available |
2014-03-01T01:35:46Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.issn |
0001-4966 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/21188 |
|
dc.subject.classification |
Acoustics |
en |
dc.subject.other |
Analytical evaluation |
en |
dc.subject.other |
Elastic problems |
en |
dc.subject.other |
Inhomogeneous density |
en |
dc.subject.other |
Internal source |
en |
dc.subject.other |
Numerical results |
en |
dc.subject.other |
Volume integral equation |
en |
dc.subject.other |
Compressibility |
en |
dc.subject.other |
Differential equations |
en |
dc.subject.other |
Spheres |
en |
dc.subject.other |
Integral equations |
en |
dc.subject.other |
acoustics |
en |
dc.subject.other |
article |
en |
dc.subject.other |
computer simulation |
en |
dc.subject.other |
elasticity |
en |
dc.subject.other |
electromagnetic field |
en |
dc.subject.other |
mathematical computing |
en |
dc.subject.other |
particle size |
en |
dc.subject.other |
pressure |
en |
dc.subject.other |
statistical model |
en |
dc.subject.other |
theoretical model |
en |
dc.subject.other |
Acoustics |
en |
dc.subject.other |
Computer Simulation |
en |
dc.subject.other |
Elasticity |
en |
dc.subject.other |
Electromagnetic Phenomena |
en |
dc.subject.other |
Linear Models |
en |
dc.subject.other |
Models, Theoretical |
en |
dc.subject.other |
Numerical Analysis, Computer-Assisted |
en |
dc.subject.other |
Particle Size |
en |
dc.subject.other |
Pressure |
en |
dc.title |
Green's function of radial inhomogeneous spheres excited by internal sources |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1121/1.3514519 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1121/1.3514519 |
en |
heal.language |
English |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
Green's function in the interior of penetrable bodies with inhomogeneous compressibility by sources placed inside them is evaluated through a Schwinger-Lippmann volume integral equation. In the case of a radial inhomogeneous sphere, the radial part of the unknown Green's function can be expanded in a double Dini's series, which allows analytical evaluation of the involved cumbersome integrals. The simple case treated here can be extended to more difficult situations involving inhomogeneous density as well as to the corresponding electromagnetic or elastic problem. Finally, numerical results are given for various inhomogeneous compressibility distributions. (C) 2011 Acoustical Society of America. [DOI: 10.1121/1.3514519] |
en |
heal.publisher |
ACOUSTICAL SOC AMER AMER INST PHYSICS |
en |
heal.journalName |
Journal of the Acoustical Society of America |
en |
dc.identifier.doi |
10.1121/1.3514519 |
en |
dc.identifier.isi |
ISI:000286944600010 |
en |
dc.identifier.volume |
129 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
24 |
en |
dc.identifier.epage |
31 |
en |