dc.contributor.author |
Apatsidis, D |
en |
dc.contributor.author |
Argyros, SA |
en |
dc.contributor.author |
Kanellopoulos, V |
en |
dc.date.accessioned |
2014-03-01T01:35:47Z |
|
dc.date.available |
2014-03-01T01:35:47Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.issn |
0002-9947 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/21192 |
|
dc.subject |
Banach spaces with non-separable dual |
en |
dc.subject |
Functions of bounded p-variation |
en |
dc.subject |
Hausdorff measures |
en |
dc.subject |
James Function space |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
P-VARIATION |
en |
dc.subject.other |
SUPERPOSITION OPERATORS |
en |
dc.subject.other |
BANACH-SPACE |
en |
dc.subject.other |
L1 |
en |
dc.title |
Hausdorff measures and functions of bounded quadratic variation |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1090/S0002-9947-2011-05209-8 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1090/S0002-9947-2011-05209-8 |
en |
heal.language |
English |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
To each function f of bounded quadratic variation we associate a Hausdorff measure μf. We show that the map f → μf is locally Lipschitz and onto the positive cone of μ[0,1]. We use the measures {μf:f ∈ V2} to determine the structure of the subspaces of V02 which either contain c0 or the square stopping time space S2. © 2011 American Mathematical Society. |
en |
heal.publisher |
AMER MATHEMATICAL SOC |
en |
heal.journalName |
Transactions of the American Mathematical Society |
en |
dc.identifier.doi |
10.1090/S0002-9947-2011-05209-8 |
en |
dc.identifier.isi |
ISI:000292621900013 |
en |
dc.identifier.volume |
363 |
en |
dc.identifier.issue |
8 |
en |
dc.identifier.spage |
4225 |
en |
dc.identifier.epage |
4262 |
en |