HEAL DSpace

Hereditarily indecomposable Banach algebras of diagonal operators

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Argyros, SA en
dc.contributor.author Deliyanni, I en
dc.contributor.author Tolias, AG en
dc.date.accessioned 2014-03-01T01:35:47Z
dc.date.available 2014-03-01T01:35:47Z
dc.date.issued 2011 en
dc.identifier.issn 0021-2172 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/21195
dc.subject banach algebra en
dc.subject banach space en
dc.subject Compact Operator en
dc.subject Dual Space en
dc.subject.classification Mathematics en
dc.subject.other NONCOMPACT OPERATORS en
dc.subject.other SPACES en
dc.subject.other L1 en
dc.title Hereditarily indecomposable Banach algebras of diagonal operators en
heal.type journalArticle en
heal.identifier.primary 10.1007/s11856-011-0004-x en
heal.identifier.secondary http://dx.doi.org/10.1007/s11856-011-0004-x en
heal.language English en
heal.publicationDate 2011 en
heal.abstract We provide a characterization of the Banach spaces X with a Schauder basis (e(n))(n is an element of N) which have the property that the dual space X* is naturally isomorphic to the space L-diag(X) of diagonal operators with respect to (e(n))(n is an element of N). We also construct a Hereditarily Indecomposable Banach space X-D with a Schauder basis (e(n))(n is an element of N) such that X-D* is isometric to L-diag(X-D) with these Banach algebras being Hereditarily Indecomposable. Finally, we show that every T is an element of L-diag(X-D) is of the form T = lambda I + K, where K is a compact operator. en
heal.publisher HEBREW UNIV MAGNES PRESS en
heal.journalName Israel Journal of Mathematics en
dc.identifier.doi 10.1007/s11856-011-0004-x en
dc.identifier.isi ISI:000287757400004 en
dc.identifier.volume 181 en
dc.identifier.issue 1 en
dc.identifier.spage 65 en
dc.identifier.epage 110 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής