dc.contributor.author |
Argyros, SA |
en |
dc.contributor.author |
Deliyanni, I |
en |
dc.contributor.author |
Tolias, AG |
en |
dc.date.accessioned |
2014-03-01T01:35:47Z |
|
dc.date.available |
2014-03-01T01:35:47Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.issn |
0021-2172 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/21195 |
|
dc.subject |
banach algebra |
en |
dc.subject |
banach space |
en |
dc.subject |
Compact Operator |
en |
dc.subject |
Dual Space |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
NONCOMPACT OPERATORS |
en |
dc.subject.other |
SPACES |
en |
dc.subject.other |
L1 |
en |
dc.title |
Hereditarily indecomposable Banach algebras of diagonal operators |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s11856-011-0004-x |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s11856-011-0004-x |
en |
heal.language |
English |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
We provide a characterization of the Banach spaces X with a Schauder basis (e(n))(n is an element of N) which have the property that the dual space X* is naturally isomorphic to the space L-diag(X) of diagonal operators with respect to (e(n))(n is an element of N). We also construct a Hereditarily Indecomposable Banach space X-D with a Schauder basis (e(n))(n is an element of N) such that X-D* is isometric to L-diag(X-D) with these Banach algebras being Hereditarily Indecomposable. Finally, we show that every T is an element of L-diag(X-D) is of the form T = lambda I + K, where K is a compact operator. |
en |
heal.publisher |
HEBREW UNIV MAGNES PRESS |
en |
heal.journalName |
Israel Journal of Mathematics |
en |
dc.identifier.doi |
10.1007/s11856-011-0004-x |
en |
dc.identifier.isi |
ISI:000287757400004 |
en |
dc.identifier.volume |
181 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
65 |
en |
dc.identifier.epage |
110 |
en |