dc.contributor.author |
Chatzidouros, EV |
en |
dc.contributor.author |
Papazoglou, VJ |
en |
dc.contributor.author |
Tsiourva, TE |
en |
dc.contributor.author |
Pantelis, DI |
en |
dc.date.accessioned |
2014-03-01T01:35:50Z |
|
dc.date.available |
2014-03-01T01:35:50Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.issn |
0360-3199 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/21208 |
|
dc.subject |
Fracture toughness |
en |
dc.subject |
Hydrogen charging |
en |
dc.subject |
Hydrogen embrittlement |
en |
dc.subject |
Microstructure |
en |
dc.subject |
Pipeline steel |
en |
dc.subject |
Welds |
en |
dc.subject.classification |
Chemistry, Physical |
en |
dc.subject.classification |
Energy & Fuels |
en |
dc.subject.classification |
Environmental Sciences |
en |
dc.subject.classification |
Physics, Atomic, Molecular & Chemical |
en |
dc.subject.other |
Base metals |
en |
dc.subject.other |
Ferrite-pearlite |
en |
dc.subject.other |
Hydrogen charging |
en |
dc.subject.other |
Hydrogen degradation |
en |
dc.subject.other |
Hydrogen effect |
en |
dc.subject.other |
In-situ |
en |
dc.subject.other |
Monotonic loading |
en |
dc.subject.other |
Pipeline crack |
en |
dc.subject.other |
Pipeline steel |
en |
dc.subject.other |
Small reduction |
en |
dc.subject.other |
Soil solutions |
en |
dc.subject.other |
Three point bending |
en |
dc.subject.other |
Current density |
en |
dc.subject.other |
Ductility |
en |
dc.subject.other |
Electrolytic cells |
en |
dc.subject.other |
Ferrites |
en |
dc.subject.other |
Fracture |
en |
dc.subject.other |
Heat affected zone |
en |
dc.subject.other |
Hydrogen |
en |
dc.subject.other |
Hydrogen embrittlement |
en |
dc.subject.other |
Microstructure |
en |
dc.subject.other |
Pipelines |
en |
dc.subject.other |
Soil moisture |
en |
dc.subject.other |
Steel pipe |
en |
dc.subject.other |
Welding |
en |
dc.subject.other |
Welds |
en |
dc.subject.other |
Fracture toughness |
en |
dc.title |
Hydrogen effect on fracture toughness of pipeline steel welds, with in situ hydrogen charging |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.ijhydene.2011.06.140 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.ijhydene.2011.06.140 |
en |
heal.language |
English |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
The API 5L X70 and X52 pipeline steel weld fracture toughness parameters are measured in a hydrogen environment and compared to the ones in air. The hydrogen environment is created by in situ hydrogen charging, using as an electrolyte a simulated soil solution, with three current densities, namely 1, 5 and 10 mA/cm(2). A specially designed electrolytic cell mounted onto a three-point bending arrangement is used and hydrogen charging is performed during the monotonic loading of the specimens. Ductility is measured in terms of the J(0) integral. In all cases a slight change in toughness was measured in terms of K-Q. Reduction of ductility in the base metal is observed, which increases with increasing current density. A more complex phenomenon is observed in the heat affected zone metal, where a small reduction in ductility is observed for the two current densities (1 and 5 mA/cm(2)) and a larger reduction for the third case (10 mA/cm(2)). Regarding microstructure of tested X70 and X52 base and HAZ metal, it is observed that the hydrogen degradation effect is enhanced in banded ferrite-pearlite formations. The aforementioned procedure is used for calculating the fracture toughness parameters of a through-thickness pipeline crack. Copyright (C) 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
International Journal of Hydrogen Energy |
en |
dc.identifier.doi |
10.1016/j.ijhydene.2011.06.140 |
en |
dc.identifier.isi |
ISI:000295657300060 |
en |
dc.identifier.volume |
36 |
en |
dc.identifier.issue |
19 |
en |
dc.identifier.spage |
12626 |
en |
dc.identifier.epage |
12643 |
en |