dc.contributor.author |
Christoforou, Z |
en |
dc.contributor.author |
Cohen, S |
en |
dc.contributor.author |
Karlaftis, MG |
en |
dc.date.accessioned |
2014-03-01T01:35:50Z |
|
dc.date.available |
2014-03-01T01:35:50Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.issn |
0022-4375 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/21209 |
|
dc.subject |
Crash type |
en |
dc.subject |
Freeway |
en |
dc.subject |
Multivariate Probit |
en |
dc.subject |
Traffic accident |
en |
dc.subject.classification |
Ergonomics |
en |
dc.subject.classification |
Public, Environmental & Occupational Health |
en |
dc.subject.classification |
Social Sciences, Interdisciplinary |
en |
dc.subject.classification |
Transportation |
en |
dc.subject.other |
Crash type |
en |
dc.subject.other |
Empirical findings |
en |
dc.subject.other |
Freeway |
en |
dc.subject.other |
Highway sections |
en |
dc.subject.other |
Multivariate Probit |
en |
dc.subject.other |
Probit models |
en |
dc.subject.other |
Real time traffics |
en |
dc.subject.other |
Real-time traffic datum |
en |
dc.subject.other |
Rear-end crashes |
en |
dc.subject.other |
Road crash |
en |
dc.subject.other |
Traffic accidents |
en |
dc.subject.other |
Traffic conditions |
en |
dc.subject.other |
Traffic parameters |
en |
dc.subject.other |
Vehicle crashes |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Highway accidents |
en |
dc.title |
Identifying crash type propensity using real-time traffic data on freeways |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.jsr.2011.01.001 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.jsr.2011.01.001 |
en |
heal.language |
English |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
Introduction: We examine the effects of various traffic parameters on type of road crash. Method: Multivariate probit models are specified on 4-years of data from the A4-A86 highway section in the Ile-de-France region, France. Results: Empirical findings indicate that crash type can almost exclusively be defined by the prevailing traffic conditions shortly before its occurrence. Rear-end crashes involving two vehicles were found to be more probable for relatively low values of both speed and density, rear-end crashes involving more than two vehicles appear to be more probable under congested conditions, while single-vehicle crashes appear to be largely geometry-dependent. Impact on Industry: Results could be integrated in a real-time traffic management application. (C) 2011 National Safety Council and Elsevier Ltd. All rights reserved. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
Journal of Safety Research |
en |
dc.identifier.doi |
10.1016/j.jsr.2011.01.001 |
en |
dc.identifier.isi |
ISI:000289021300007 |
en |
dc.identifier.volume |
42 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
43 |
en |
dc.identifier.epage |
50 |
en |