HEAL DSpace

Identifying crash type propensity using real-time traffic data on freeways

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Christoforou, Z en
dc.contributor.author Cohen, S en
dc.contributor.author Karlaftis, MG en
dc.date.accessioned 2014-03-01T01:35:50Z
dc.date.available 2014-03-01T01:35:50Z
dc.date.issued 2011 en
dc.identifier.issn 0022-4375 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/21209
dc.subject Crash type en
dc.subject Freeway en
dc.subject Multivariate Probit en
dc.subject Traffic accident en
dc.subject.classification Ergonomics en
dc.subject.classification Public, Environmental & Occupational Health en
dc.subject.classification Social Sciences, Interdisciplinary en
dc.subject.classification Transportation en
dc.subject.other Crash type en
dc.subject.other Empirical findings en
dc.subject.other Freeway en
dc.subject.other Highway sections en
dc.subject.other Multivariate Probit en
dc.subject.other Probit models en
dc.subject.other Real time traffics en
dc.subject.other Real-time traffic datum en
dc.subject.other Rear-end crashes en
dc.subject.other Road crash en
dc.subject.other Traffic accidents en
dc.subject.other Traffic conditions en
dc.subject.other Traffic parameters en
dc.subject.other Vehicle crashes en
dc.subject.other Mathematical models en
dc.subject.other Highway accidents en
dc.title Identifying crash type propensity using real-time traffic data on freeways en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.jsr.2011.01.001 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.jsr.2011.01.001 en
heal.language English en
heal.publicationDate 2011 en
heal.abstract Introduction: We examine the effects of various traffic parameters on type of road crash. Method: Multivariate probit models are specified on 4-years of data from the A4-A86 highway section in the Ile-de-France region, France. Results: Empirical findings indicate that crash type can almost exclusively be defined by the prevailing traffic conditions shortly before its occurrence. Rear-end crashes involving two vehicles were found to be more probable for relatively low values of both speed and density, rear-end crashes involving more than two vehicles appear to be more probable under congested conditions, while single-vehicle crashes appear to be largely geometry-dependent. Impact on Industry: Results could be integrated in a real-time traffic management application. (C) 2011 National Safety Council and Elsevier Ltd. All rights reserved. en
heal.publisher PERGAMON-ELSEVIER SCIENCE LTD en
heal.journalName Journal of Safety Research en
dc.identifier.doi 10.1016/j.jsr.2011.01.001 en
dc.identifier.isi ISI:000289021300007 en
dc.identifier.volume 42 en
dc.identifier.issue 1 en
dc.identifier.spage 43 en
dc.identifier.epage 50 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής