dc.contributor.author |
Kakosimos, PE |
en |
dc.contributor.author |
Kladas, AG |
en |
dc.date.accessioned |
2014-03-01T01:35:51Z |
|
dc.date.available |
2014-03-01T01:35:51Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.issn |
0960-1481 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/21213 |
|
dc.subject |
Incremental conductance algorithm |
en |
dc.subject |
Maximum power point tracking |
en |
dc.subject |
Photovoltaic arrays |
en |
dc.subject |
Predictive control technique |
en |
dc.subject.classification |
Energy & Fuels |
en |
dc.subject.other |
Conventional approach |
en |
dc.subject.other |
Energy exploitation |
en |
dc.subject.other |
Incremental conductance |
en |
dc.subject.other |
Incremental conductance algorithm |
en |
dc.subject.other |
Maximum power point tracker |
en |
dc.subject.other |
Maximum power point tracking |
en |
dc.subject.other |
Model predictive controllers |
en |
dc.subject.other |
Photovoltaic arrays |
en |
dc.subject.other |
Predictive control |
en |
dc.subject.other |
PV arrays |
en |
dc.subject.other |
PV system |
en |
dc.subject.other |
Radiation variations |
en |
dc.subject.other |
Real time interactions |
en |
dc.subject.other |
Sampling time |
en |
dc.subject.other |
Simulation model |
en |
dc.subject.other |
Sky condition |
en |
dc.subject.other |
Solar radiation data |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Computer simulation |
en |
dc.subject.other |
Controllers |
en |
dc.subject.other |
Model predictive control |
en |
dc.subject.other |
Optical flows |
en |
dc.subject.other |
Photovoltaic cells |
en |
dc.subject.other |
Photovoltaic effects |
en |
dc.subject.other |
Pumps |
en |
dc.subject.other |
Solar energy |
en |
dc.subject.other |
Solar radiation |
en |
dc.subject.other |
Sun |
en |
dc.subject.other |
Predictive control systems |
en |
dc.subject.other |
algorithm |
en |
dc.subject.other |
exploitation |
en |
dc.subject.other |
photovoltaic system |
en |
dc.subject.other |
real time |
en |
dc.subject.other |
solar power |
en |
dc.subject.other |
solar radiation |
en |
dc.title |
Implementation of photovoltaic array MPPT through fixed step predictive control technique |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.renene.2011.02.021 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.renene.2011.02.021 |
en |
heal.language |
English |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
This paper proposes the implementation of Photovoltaic (PV) array Maximum Power Point Tracker (MPPT) through Fixed Step-Model Predictive Controller (FS MPC). The proposed controller scheme is based on the modified INcremental Conductance (INC) algorithm combined with the two-step horizon FS MPC. The current based INC algorithm is subject to major modifications in order to be capable of real time interaction between the MPPT and the controller obtaining sufficient information in one sampling time. The developed technique has been incorporated into a model for the overall simulation of the performance of a PV array for solar energy exploitation and is compared to the conventional approach under solar radiation variation improving PV system utilization efficiency and enabling to optimize system performance. This study also illustrates the effectiveness of the proposed controller scheme under various sky conditions with a simulation model employing real solar radiation data. (C) 2011 Elsevier Ltd. All rights reserved. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
Renewable Energy |
en |
dc.identifier.doi |
10.1016/j.renene.2011.02.021 |
en |
dc.identifier.isi |
ISI:000290506700025 |
en |
dc.identifier.volume |
36 |
en |
dc.identifier.issue |
9 |
en |
dc.identifier.spage |
2508 |
en |
dc.identifier.epage |
2514 |
en |