dc.contributor.author |
Afantitis, A |
en |
dc.contributor.author |
Melagraki, G |
en |
dc.contributor.author |
Koutentis, PA |
en |
dc.contributor.author |
Sarimveis, H |
en |
dc.contributor.author |
Kollias, G |
en |
dc.date.accessioned |
2014-03-01T01:35:56Z |
|
dc.date.available |
2014-03-01T01:35:56Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.issn |
0223-5234 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/21253 |
|
dc.subject |
β-Amyloid inhibitors |
en |
dc.subject |
Alzheimer's disease |
en |
dc.subject |
CP-ANN |
en |
dc.subject |
In silico virtual screening |
en |
dc.subject |
Kohonen map |
en |
dc.subject |
QSAR |
en |
dc.subject.classification |
Chemistry, Medicinal |
en |
dc.subject.other |
amyloid beta protein |
en |
dc.subject.other |
efenamic acid |
en |
dc.subject.other |
article |
en |
dc.subject.other |
artificial neural network |
en |
dc.subject.other |
biological activity |
en |
dc.subject.other |
computer model |
en |
dc.subject.other |
drug identification |
en |
dc.subject.other |
drug screening |
en |
dc.subject.other |
pharmacophore |
en |
dc.subject.other |
prediction |
en |
dc.subject.other |
protein aggregation |
en |
dc.subject.other |
quantitative structure activity relation |
en |
dc.subject.other |
Amyloid beta-Peptides |
en |
dc.subject.other |
Cluster Analysis |
en |
dc.subject.other |
Fenamates |
en |
dc.subject.other |
High-Throughput Screening Assays |
en |
dc.subject.other |
Ligands |
en |
dc.subject.other |
Models, Molecular |
en |
dc.subject.other |
Molecular Structure |
en |
dc.subject.other |
Neural Networks (Computer) |
en |
dc.subject.other |
Predictive Value of Tests |
en |
dc.subject.other |
Stereoisomerism |
en |
dc.subject.other |
Structure-Activity Relationship |
en |
dc.title |
Ligand - Based virtual screening procedure for the prediction and the identification of novel β-amyloid aggregation inhibitors using Kohonen maps and Counterpropagation Artificial Neural Networks |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.ejmech.2010.11.029 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.ejmech.2010.11.029 |
en |
heal.language |
English |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
In this work we have developed an in silico model to predict the inhibition of beta-amyloid aggregation by small organic molecules. In particular we have explored the inhibitory activity of a series of 62 N-phenylanthranilic acids using Kohonen maps and Counterpropagation Artificial Neural Networks. The effects of various structural modifications on biological activity are investigated and novel structures are designed using the developed in silico model. More specifically a search for optimized pharmacophore patterns by insertions, substitutions, and ring fusions of pharmacophoric substituents of the main building block scaffolds is described. The detection of the domain of applicability defines compounds whose estimations can be accepted with confidence. (C) 2010 Elsevier Masson SAS. All rights reserved. |
en |
heal.publisher |
ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER |
en |
heal.journalName |
European Journal of Medicinal Chemistry |
en |
dc.identifier.doi |
10.1016/j.ejmech.2010.11.029 |
en |
dc.identifier.isi |
ISI:000287617500005 |
en |
dc.identifier.volume |
46 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
497 |
en |
dc.identifier.epage |
508 |
en |