HEAL DSpace

Mathematical modeling of cancer cell invasion of tissue: Biological insight from mathematical analysis and computational simulation

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Andasari, V en
dc.contributor.author Gerisch, A en
dc.contributor.author Lolas, G en
dc.contributor.author South, AP en
dc.contributor.author Chaplain, MAJ en
dc.date.accessioned 2014-03-01T01:35:57Z
dc.date.available 2014-03-01T01:35:57Z
dc.date.issued 2011 en
dc.identifier.issn 0303-6812 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/21265
dc.subject Cancer invasion en
dc.subject Haptotaxis en
dc.subject Invasion index en
dc.subject Organotypic culture en
dc.subject Spatio-temporal heterogeneity en
dc.subject uPA system en
dc.subject.classification Biology en
dc.subject.classification Mathematical & Computational Biology en
dc.subject.other urokinase en
dc.subject.other article en
dc.subject.other biological model en
dc.subject.other cancer invasion en
dc.subject.other computer simulation en
dc.subject.other extracellular matrix en
dc.subject.other human en
dc.subject.other metabolism en
dc.subject.other pathology en
dc.subject.other physiology en
dc.subject.other Computer Simulation en
dc.subject.other Extracellular Matrix en
dc.subject.other Humans en
dc.subject.other Models, Biological en
dc.subject.other Neoplasm Invasiveness en
dc.subject.other Urokinase-Type Plasminogen Activator en
dc.title Mathematical modeling of cancer cell invasion of tissue: Biological insight from mathematical analysis and computational simulation en
heal.type journalArticle en
heal.identifier.primary 10.1007/s00285-010-0369-1 en
heal.identifier.secondary http://dx.doi.org/10.1007/s00285-010-0369-1 en
heal.language English en
heal.publicationDate 2011 en
heal.abstract The ability of cancer cells to break out of tissue compartments and invade locally gives solid tumours a defining deadly characteristic. One of the first steps of invasion is the remodelling of the surrounding tissue or extracellular matrix (ECM) and a major part of this process is the over-expression of proteolytic enzymes, such as the urokinase-type plasminogen activator (uPA) and matrix metalloproteinases (MMPs), by the cancer cells to break down ECM proteins. Degradation of the matrix enables the cancer cells to migrate through the tissue and subsequently to spread to secondary sites in the body, a process known as metastasis. In this paper we undertake an analysis of a mathematical model of cancer cell invasion of tissue, or ECM, which focuses on the role of the urokinase plasminogen activation system. The model consists of a system of five reaction-diffusion-taxis partial differential equations describing the interactions between cancer cells, uPA, uPA inhibitors, plasmin and the host tissue. Cancer cells react chemotactically and haptotactically to the spatio-temporal effects of the uPA system. The results obtained from computational simulations carried out on the model equations produce dynamic heterogeneous spatio-temporal solutions and using linear stability analysis we show that this is caused by a taxis-driven instability of a spatially homogeneous steady-state. Finally we consider the biological implications of the model results, draw parallels with clinical samples and laboratory based models of cancer cell invasion using three-dimensional invasion assay, and go on to discuss future development of the model. © 2010 Springer-Verlag. en
heal.publisher SPRINGER en
heal.journalName Journal of Mathematical Biology en
dc.identifier.doi 10.1007/s00285-010-0369-1 en
dc.identifier.isi ISI:000291604600007 en
dc.identifier.volume 63 en
dc.identifier.issue 1 en
dc.identifier.spage 141 en
dc.identifier.epage 171 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής