dc.contributor.author |
Fikioris, G |
en |
dc.contributor.author |
Lygkouris, S |
en |
dc.contributor.author |
Papakanellos, PJ |
en |
dc.date.accessioned |
2014-03-01T01:36:06Z |
|
dc.date.available |
2014-03-01T01:36:06Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.issn |
0018-926X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/21276 |
|
dc.subject |
Antenna arrays |
en |
dc.subject |
Galerkin method |
en |
dc.subject |
method of methods |
en |
dc.subject |
resonance |
en |
dc.subject.classification |
Engineering, Electrical & Electronic |
en |
dc.subject.classification |
Telecommunications |
en |
dc.subject.other |
Circular arrays |
en |
dc.subject.other |
Cylindrical dipole |
en |
dc.subject.other |
Experimental studies |
en |
dc.subject.other |
Galerkin |
en |
dc.subject.other |
method of methods |
en |
dc.subject.other |
Narrow resonances |
en |
dc.subject.other |
Resonant circular arrays |
en |
dc.subject.other |
Theoretical study |
en |
dc.subject.other |
Antenna arrays |
en |
dc.subject.other |
Galerkin methods |
en |
dc.subject.other |
Integral equations |
en |
dc.subject.other |
Local area networks |
en |
dc.subject.other |
Resonance |
en |
dc.subject.other |
Dipole antennas |
en |
dc.title |
Method-of-moments analysis of resonant circular arrays of cylindrical dipoles |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1109/TAP.2011.2165475 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/TAP.2011.2165475 |
en |
heal.identifier.secondary |
5993504 |
en |
heal.language |
English |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
We perform a method-of-moments (MoM) analysis of a circular array of cylindrical dipoles. The array is known from earlier theoretical and experimental studies to possess very narrow resonances. The earlier theoretical studies were carried out using the two-term theory. The present paper is a direct continuation of a recent work showing that the problem possesses unique and particular difficulties. The main difficulties are overcome herein using a set of improved kernels in the usual Hallén-type integral equations (these kernels had been developed in previous works, and were successfully incorporated into the aforementioned two-term theory analyses). We make a detailed comparison of our MoM results to two-term theory results and, also, to the earlier experimental results. © 2011 IEEE. |
en |
heal.publisher |
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
en |
heal.journalName |
IEEE Transactions on Antennas and Propagation |
en |
dc.identifier.doi |
10.1109/TAP.2011.2165475 |
en |
dc.identifier.isi |
ISI:000297585600025 |
en |
dc.identifier.volume |
59 |
en |
dc.identifier.issue |
12 |
en |
dc.identifier.spage |
4615 |
en |
dc.identifier.epage |
4623 |
en |