dc.contributor.author | Spathis, G | en |
dc.contributor.author | Kontou, E | en |
dc.date.accessioned | 2014-03-01T01:36:20Z | |
dc.date.available | 2014-03-01T01:36:20Z | |
dc.date.issued | 2011 | en |
dc.identifier.issn | 0021-8995 | en |
dc.identifier.uri | https://dspace.lib.ntua.gr/xmlui/handle/123456789/21285 | |
dc.subject | compression | en |
dc.subject | mechanical properties | en |
dc.subject | microstructure | en |
dc.subject | modeling | en |
dc.subject.classification | Polymer Science | en |
dc.subject.other | Cellular material | en |
dc.subject.other | Closed cells | en |
dc.subject.other | Complex deformation | en |
dc.subject.other | compression | en |
dc.subject.other | Elastic regime | en |
dc.subject.other | External loading | en |
dc.subject.other | Limit Load | en |
dc.subject.other | Macroscopic deformations | en |
dc.subject.other | Mechanical behavior | en |
dc.subject.other | Micro mechanics model | en |
dc.subject.other | modeling | en |
dc.subject.other | Polymeric foam materials | en |
dc.subject.other | Polymeric foams | en |
dc.subject.other | Rate dependence | en |
dc.subject.other | Stress-strain diagram | en |
dc.subject.other | Stress-strain response | en |
dc.subject.other | Viscoplastic | en |
dc.subject.other | Compressive stress | en |
dc.subject.other | Deformation | en |
dc.subject.other | Mechanical properties | en |
dc.subject.other | Microstructure | en |
dc.subject.other | Polymers | en |
dc.subject.other | Strain rate | en |
dc.subject.other | Tensile stress | en |
dc.subject.other | Unloading | en |
dc.subject.other | Stress-strain curves | en |
dc.title | Modeling the compressive stress-strain response of polymeric foams | en |
heal.type | journalArticle | en |
heal.identifier.primary | 10.1002/app.33848 | en |
heal.identifier.secondary | http://dx.doi.org/10.1002/app.33848 | en |
heal.language | English | en |
heal.publicationDate | 2011 | en |
heal.abstract | The mechanical behavior of cellular materials appears to have, for both open and closed cells, similar characteristics. The compressive stress-strain diagram contains a nearly elastic regime; this leads to a limit load, followed by a plateau extending to a strain of about 50% on average. All of the main features of this curve are related to the material's microstructure. In this study, taking into account the complex deformation mechanisms occurring in a cellular material under external loading, we introduced a statistical micromechanics model. The geometry of our analysis was based on a previous study, where the deformation of the individual struts was connected to the macroscopic deformation tensor. Assuming further that deformation was separated into elastic and viscoplastic parts and following a specific kinematic procedure, we simulated the compressive stress-strain response, the rate dependence, and the loading-unloading behavior of polymeric foam materials. (C) 2011 Wiley Periodicals, Inc. J Appl Polym Sci 121: 3262-3268, 2011 | en |
heal.publisher | WILEY-BLACKWELL | en |
heal.journalName | Journal of Applied Polymer Science | en |
dc.identifier.doi | 10.1002/app.33848 | en |
dc.identifier.isi | ISI:000291613900018 | en |
dc.identifier.volume | 121 | en |
dc.identifier.issue | 6 | en |
dc.identifier.spage | 3262 | en |
dc.identifier.epage | 3268 | en |
Αρχεία | Μέγεθος | Μορφότυπο | Προβολή |
---|---|---|---|
Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο. |