dc.contributor.author |
Karagiannis, A |
en |
dc.contributor.author |
Constantinou, P |
en |
dc.date.accessioned |
2014-03-01T01:36:26Z |
|
dc.date.available |
2014-03-01T01:36:26Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.issn |
1089-7771 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/21302 |
|
dc.subject |
Biomedical signal processing |
en |
dc.subject |
electrocardiography (ECG) |
en |
dc.subject |
empirical mode decomposition (EMD) |
en |
dc.subject.classification |
Computer Science, Information Systems |
en |
dc.subject.classification |
Computer Science, Interdisciplinary Applications |
en |
dc.subject.classification |
Mathematical & Computational Biology |
en |
dc.subject.classification |
Medical Informatics |
en |
dc.subject.other |
Biomedical signal |
en |
dc.subject.other |
Biomedical signal processing |
en |
dc.subject.other |
De-noising |
en |
dc.subject.other |
ECG signals |
en |
dc.subject.other |
Empirical mode decomposition |
en |
dc.subject.other |
Intrinsic mode functions |
en |
dc.subject.other |
Noise components |
en |
dc.subject.other |
Processing Time |
en |
dc.subject.other |
Statistical significance test |
en |
dc.subject.other |
White Gaussian Noise |
en |
dc.subject.other |
Bioelectric phenomena |
en |
dc.subject.other |
Data handling |
en |
dc.subject.other |
Electrocardiography |
en |
dc.subject.other |
Electrochromic devices |
en |
dc.subject.other |
Gaussian noise (electronic) |
en |
dc.subject.other |
Time series |
en |
dc.subject.other |
Signal processing |
en |
dc.subject.other |
algorithm |
en |
dc.subject.other |
article |
en |
dc.subject.other |
computer simulation |
en |
dc.subject.other |
electrocardiography |
en |
dc.subject.other |
human |
en |
dc.subject.other |
methodology |
en |
dc.subject.other |
signal processing |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Computer Simulation |
en |
dc.subject.other |
Electrocardiography |
en |
dc.subject.other |
Humans |
en |
dc.subject.other |
Signal Processing, Computer-Assisted |
en |
dc.title |
Noise-assisted data processing with empirical mode decomposition in biomedical signals |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1109/TITB.2010.2091648 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/TITB.2010.2091648 |
en |
heal.identifier.secondary |
5629368 |
en |
heal.language |
English |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
In this paper, a methodology is described in order to investigate the performance of empirical mode decomposition (EMD) in biomedical signals, and especially in the case of electrocardiogram (ECG). Synthetic ECG signals corrupted with white Gaussian noise are employed and time series of various lengths are processed with EMD in order to extract the intrinsic mode functions (IMFs). A statistical significance test is implemented for the identification of IMFs with high-level noise components and their exclusion from denoising procedures. Simulation campaign results reveal that a decrease of processing time is accomplished with the introduction of preprocessing stage, prior to the application of EMD in biomedical time series. Furthermore, the variation in the number of IMFs according to the type of the preprocessing stage is studied as a function of SNR and time-series length. The application of the methodology in MITBIH ECG records is also presented in order to verify the findings in real ECG signals. © 2006 IEEE. |
en |
heal.publisher |
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
en |
heal.journalName |
IEEE Transactions on Information Technology in Biomedicine |
en |
dc.identifier.doi |
10.1109/TITB.2010.2091648 |
en |
dc.identifier.isi |
ISI:000286009500002 |
en |
dc.identifier.volume |
15 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
11 |
en |
dc.identifier.epage |
18 |
en |