HEAL DSpace

Noise-assisted data processing with empirical mode decomposition in biomedical signals

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Karagiannis, A en
dc.contributor.author Constantinou, P en
dc.date.accessioned 2014-03-01T01:36:26Z
dc.date.available 2014-03-01T01:36:26Z
dc.date.issued 2011 en
dc.identifier.issn 1089-7771 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/21302
dc.subject Biomedical signal processing en
dc.subject electrocardiography (ECG) en
dc.subject empirical mode decomposition (EMD) en
dc.subject.classification Computer Science, Information Systems en
dc.subject.classification Computer Science, Interdisciplinary Applications en
dc.subject.classification Mathematical & Computational Biology en
dc.subject.classification Medical Informatics en
dc.subject.other Biomedical signal en
dc.subject.other Biomedical signal processing en
dc.subject.other De-noising en
dc.subject.other ECG signals en
dc.subject.other Empirical mode decomposition en
dc.subject.other Intrinsic mode functions en
dc.subject.other Noise components en
dc.subject.other Processing Time en
dc.subject.other Statistical significance test en
dc.subject.other White Gaussian Noise en
dc.subject.other Bioelectric phenomena en
dc.subject.other Data handling en
dc.subject.other Electrocardiography en
dc.subject.other Electrochromic devices en
dc.subject.other Gaussian noise (electronic) en
dc.subject.other Time series en
dc.subject.other Signal processing en
dc.subject.other algorithm en
dc.subject.other article en
dc.subject.other computer simulation en
dc.subject.other electrocardiography en
dc.subject.other human en
dc.subject.other methodology en
dc.subject.other signal processing en
dc.subject.other Algorithms en
dc.subject.other Computer Simulation en
dc.subject.other Electrocardiography en
dc.subject.other Humans en
dc.subject.other Signal Processing, Computer-Assisted en
dc.title Noise-assisted data processing with empirical mode decomposition in biomedical signals en
heal.type journalArticle en
heal.identifier.primary 10.1109/TITB.2010.2091648 en
heal.identifier.secondary http://dx.doi.org/10.1109/TITB.2010.2091648 en
heal.identifier.secondary 5629368 en
heal.language English en
heal.publicationDate 2011 en
heal.abstract In this paper, a methodology is described in order to investigate the performance of empirical mode decomposition (EMD) in biomedical signals, and especially in the case of electrocardiogram (ECG). Synthetic ECG signals corrupted with white Gaussian noise are employed and time series of various lengths are processed with EMD in order to extract the intrinsic mode functions (IMFs). A statistical significance test is implemented for the identification of IMFs with high-level noise components and their exclusion from denoising procedures. Simulation campaign results reveal that a decrease of processing time is accomplished with the introduction of preprocessing stage, prior to the application of EMD in biomedical time series. Furthermore, the variation in the number of IMFs according to the type of the preprocessing stage is studied as a function of SNR and time-series length. The application of the methodology in MITBIH ECG records is also presented in order to verify the findings in real ECG signals. © 2006 IEEE. en
heal.publisher IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC en
heal.journalName IEEE Transactions on Information Technology in Biomedicine en
dc.identifier.doi 10.1109/TITB.2010.2091648 en
dc.identifier.isi ISI:000286009500002 en
dc.identifier.volume 15 en
dc.identifier.issue 1 en
dc.identifier.spage 11 en
dc.identifier.epage 18 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής