dc.contributor.author |
Motreanu, D |
en |
dc.contributor.author |
Motreanu, VV |
en |
dc.contributor.author |
Papageorgiou, NS |
en |
dc.date.accessioned |
2014-03-01T01:36:27Z |
|
dc.date.available |
2014-03-01T01:36:27Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.issn |
1534-0392 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/21303 |
|
dc.subject |
C-condition |
en |
dc.subject |
Coercive functional |
en |
dc.subject |
Indefinite linear part |
en |
dc.subject |
Local linking |
en |
dc.subject |
Reduction method |
en |
dc.subject |
Resonant system |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
NONTRIVIAL SOLUTIONS |
en |
dc.subject.other |
EQUATIONS |
en |
dc.title |
Nonautonomous resonant periodic systems with indefinite linear part and a nonsmooth potential |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.3934/cpaa.2011.10.1401 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.3934/cpaa.2011.10.1401 |
en |
heal.language |
English |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
A nonautonomous second order system with a nonsmooth poten-tial is studied. It is assumed that the system is asymptotically linear at infinity and resonant (both at infinity and at the origin), with respect to the zero ei- genvalue. Also, it is assumed that the linearization of the system is indefinite. Using a nonsmooth variant of the reduction method and the local linking the- orem, we show that the system has at least two nontrivial solutions. |
en |
heal.publisher |
AMER INST MATHEMATICAL SCIENCES |
en |
heal.journalName |
Communications on Pure and Applied Analysis |
en |
dc.identifier.doi |
10.3934/cpaa.2011.10.1401 |
en |
dc.identifier.isi |
ISI:000295122100008 |
en |
dc.identifier.volume |
10 |
en |
dc.identifier.issue |
5 |
en |
dc.identifier.spage |
1401 |
en |
dc.identifier.epage |
1414 |
en |