dc.contributor.author |
Aizicovici, S |
en |
dc.contributor.author |
Papageorgiou, NS |
en |
dc.contributor.author |
Staicu, V |
en |
dc.date.accessioned |
2014-03-01T01:36:29Z |
|
dc.date.available |
2014-03-01T01:36:29Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.issn |
0022-247X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/21310 |
|
dc.subject |
C-condition |
en |
dc.subject |
Concave term |
en |
dc.subject |
Contractible space |
en |
dc.subject |
Critical groups |
en |
dc.subject |
Ekeland variational principle |
en |
dc.subject |
Homotopy equivalent |
en |
dc.subject |
Strong deformation retract |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
SCALAR P-LAPLACIAN |
en |
dc.subject.other |
NONTRIVIAL SOLUTIONS |
en |
dc.subject.other |
EQUATIONS |
en |
dc.subject.other |
EIGENVALUES |
en |
dc.subject.other |
EXISTENCE |
en |
dc.subject.other |
SPECTRUM |
en |
dc.title |
Nonlinear resonant periodic problems with concave terms |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.jmaa.2010.09.009 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.jmaa.2010.09.009 |
en |
heal.language |
English |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
We consider a nonlinear periodic problem, driven by the scalar p-Laplacian with a concave term and a Caratheodory perturbation. We assume that this perturbation f (t,x) is (p-1)-linear at +/-infinity, and resonance can occur with respect to an eigenvalue lambda(m+1), m >= 2, of the negative periodic scalar p-Laplacian. Using a combination of variational techniques, based on the critical point theory, with Morse theory, we establish the existence of at least three nontrivial solutions. Useful in our considerations is an alternative minimax characterization of lambda(1) > 0 (the first nonzero eigenvalue) that we prove in this work. (C) 2010 Elsevier Inc. All rights reserved. |
en |
heal.publisher |
ACADEMIC PRESS INC ELSEVIER SCIENCE |
en |
heal.journalName |
Journal of Mathematical Analysis and Applications |
en |
dc.identifier.doi |
10.1016/j.jmaa.2010.09.009 |
en |
dc.identifier.isi |
ISI:000284293600032 |
en |
dc.identifier.volume |
375 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
342 |
en |
dc.identifier.epage |
364 |
en |