dc.contributor.author |
Sapountzakis, EJ |
en |
dc.contributor.author |
Kampitsis, AE |
en |
dc.date.accessioned |
2014-03-01T01:36:29Z |
|
dc.date.available |
2014-03-01T01:36:29Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.issn |
0022-460X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/21311 |
|
dc.subject |
Boundary Condition |
en |
dc.subject |
Boundary Element |
en |
dc.subject |
Boundary Element Method |
en |
dc.subject |
Boundary Value Problem |
en |
dc.subject |
Cross Section |
en |
dc.subject |
Differential Algebraic Equation |
en |
dc.subject |
Nonlinear Response |
en |
dc.subject |
Shear Deformation |
en |
dc.subject |
time discretization |
en |
dc.subject.classification |
Acoustics |
en |
dc.subject.classification |
Engineering, Mechanical |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Analog equation methods |
en |
dc.subject.other |
Axial displacements |
en |
dc.subject.other |
Axial loading |
en |
dc.subject.other |
Beam displacement |
en |
dc.subject.other |
Boundary element techniques |
en |
dc.subject.other |
Boundary elements |
en |
dc.subject.other |
Combined actions |
en |
dc.subject.other |
Differential algebraic equations |
en |
dc.subject.other |
General boundary conditions |
en |
dc.subject.other |
Geometrically nonlinear |
en |
dc.subject.other |
Large deflection |
en |
dc.subject.other |
Load frequency |
en |
dc.subject.other |
Moving load |
en |
dc.subject.other |
Moving loading |
en |
dc.subject.other |
Non-linear response |
en |
dc.subject.other |
Non-Linearity |
en |
dc.subject.other |
Nonlinear visco-elastic |
en |
dc.subject.other |
Shear deformable beams |
en |
dc.subject.other |
Shear deformation coefficients |
en |
dc.subject.other |
Stress functions |
en |
dc.subject.other |
Time discretization |
en |
dc.subject.other |
Transverse displacements |
en |
dc.subject.other |
Viscoelastic foundation |
en |
dc.subject.other |
Beams and girders |
en |
dc.subject.other |
Boundary element method |
en |
dc.subject.other |
Control nonlinearities |
en |
dc.subject.other |
Shear deformation |
en |
dc.subject.other |
Shear flow |
en |
dc.subject.other |
Nonlinear equations |
en |
dc.title |
Nonlinear response of shear deformable beams on tensionless nonlinear viscoelastic foundation under moving loads |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.jsv.2011.06.009 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.jsv.2011.06.009 |
en |
heal.language |
English |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
In this paper, a boundary element method is developed for the geometrically nonlinear response of shear deformable beams of simply or multiply connected constant cross-section, traversed by moving loads, resting on tensionless nonlinear three-parameter viscoelastic foundation, undergoing moderate large deflections under general boundary conditions. The beam is subjected to the combined action of arbitrarily distributed or concentrated transverse moving loading as well as to axial loading. To account for shear deformations, the concept of shear deformation coefficients is used. Three boundary value problems are formulated with respect to the transverse displacement, to the axial displacement and to a stress functions and solved using the Analog Equation Method, a Boundary Element based method. Application of the boundary element technique yields a system of nonlinear Differential-Algebraic Equations, which is solved using an efficient time discretization scheme, from which the transverse and axial displacements are computed. The evaluation of the shear deformation coefficient is accomplished from the aforementioned stress function using only boundary integration. Analyses are performed to illustrate, wherever possible, the accuracy of the developed method, to investigate the effects of various parameters, such as the load velocity, load frequency, shear deformation, foundation nonlinearity, damping, on the beam displacements and stress resultants and to examine how the consideration of shear and axial compression affects the response of the system. (C) 2011 Elsevier Ltd. All rights reserved. |
en |
heal.publisher |
ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD |
en |
heal.journalName |
Journal of Sound and Vibration |
en |
dc.identifier.doi |
10.1016/j.jsv.2011.06.009 |
en |
dc.identifier.isi |
ISI:000293928400015 |
en |
dc.identifier.volume |
330 |
en |
dc.identifier.issue |
22 |
en |
dc.identifier.spage |
5410 |
en |
dc.identifier.epage |
5426 |
en |