HEAL DSpace

Numerical optimization using synergetic swarms of foraging bacterial populations

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Chatzis, SP en
dc.contributor.author Koukas, S en
dc.date.accessioned 2014-03-01T01:36:32Z
dc.date.available 2014-03-01T01:36:32Z
dc.date.issued 2011 en
dc.identifier.issn 0957-4174 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/21323
dc.subject Evolutionary optimization en
dc.subject.classification Computer Science, Artificial Intelligence en
dc.subject.classification Engineering, Electrical & Electronic en
dc.subject.classification Operations Research & Management Science en
dc.subject.other Bacterial foraging optimization en
dc.subject.other Bacterial population en
dc.subject.other Evolutionary optimizations en
dc.subject.other Global optimum en
dc.subject.other High-dimensional problems en
dc.subject.other Local optima en
dc.subject.other Numerical optimizations en
dc.subject.other Optimization algorithms en
dc.subject.other Optimization problems en
dc.subject.other Particle swarm optimization algorithm en
dc.subject.other Population convergence en
dc.subject.other Population-based optimization en
dc.subject.other Solution vectors en
dc.subject.other Algorithms en
dc.subject.other Bacteria en
dc.subject.other Bacteriology en
dc.subject.other Elastic moduli en
dc.subject.other Particle swarm optimization (PSO) en
dc.subject.other Population statistics en
dc.subject.other Convergence of numerical methods en
dc.title Numerical optimization using synergetic swarms of foraging bacterial populations en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.eswa.2011.06.031 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.eswa.2011.06.031 en
heal.language English en
heal.publicationDate 2011 en
heal.abstract The bacterial foraging optimization (BFO) algorithm is a popular stochastic, population-based optimization technique that can be applied to a wide range of problems. Two are the major issues the BFO algorithm is confronted with: first, the foraging mechanism of BFO might in some cases induce the attraction of bacteria gathered near the global optimum by bacteria gathered to local optima, thus slowing down the whole population convergence. Second. BFO is susceptible to the curse-of-dimensionality, which makes it significantly harder to find the global optimum of a high-dimensional problem, compared to a low-dimensional problem with similar topology. In this paper, we introduce a novel BFO-based optimization algorithm aiming to address these issues, the synergetic bacterial swarming optimization (SBSO) algorithm. Our novel approach consists of: (i) the introduction of the swarming dynamics of the particle swarm optimization algorithm in the context of BFO, in order to ameliorate the convergence issues of the BFO bacteria foraging mechanism; and (ii) the utilization of multiple populations to optimize different components of the solution vector cooperatively, so as to mitigate the curse-of-dimensionality issues of the algorithm. We demonstrate the efficacy of our approach on several benchmark optimization problems. (C) 2011 Elsevier Ltd. All rights reserved. en
heal.publisher PERGAMON-ELSEVIER SCIENCE LTD en
heal.journalName Expert Systems with Applications en
dc.identifier.doi 10.1016/j.eswa.2011.06.031 en
dc.identifier.isi ISI:000295193400103 en
dc.identifier.volume 38 en
dc.identifier.issue 12 en
dc.identifier.spage 15332 en
dc.identifier.epage 15343 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής