dc.contributor.author |
Chatzis, SP |
en |
dc.contributor.author |
Koukas, S |
en |
dc.date.accessioned |
2014-03-01T01:36:32Z |
|
dc.date.available |
2014-03-01T01:36:32Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.issn |
0957-4174 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/21323 |
|
dc.subject |
Evolutionary optimization |
en |
dc.subject.classification |
Computer Science, Artificial Intelligence |
en |
dc.subject.classification |
Engineering, Electrical & Electronic |
en |
dc.subject.classification |
Operations Research & Management Science |
en |
dc.subject.other |
Bacterial foraging optimization |
en |
dc.subject.other |
Bacterial population |
en |
dc.subject.other |
Evolutionary optimizations |
en |
dc.subject.other |
Global optimum |
en |
dc.subject.other |
High-dimensional problems |
en |
dc.subject.other |
Local optima |
en |
dc.subject.other |
Numerical optimizations |
en |
dc.subject.other |
Optimization algorithms |
en |
dc.subject.other |
Optimization problems |
en |
dc.subject.other |
Particle swarm optimization algorithm |
en |
dc.subject.other |
Population convergence |
en |
dc.subject.other |
Population-based optimization |
en |
dc.subject.other |
Solution vectors |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Bacteria |
en |
dc.subject.other |
Bacteriology |
en |
dc.subject.other |
Elastic moduli |
en |
dc.subject.other |
Particle swarm optimization (PSO) |
en |
dc.subject.other |
Population statistics |
en |
dc.subject.other |
Convergence of numerical methods |
en |
dc.title |
Numerical optimization using synergetic swarms of foraging bacterial populations |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.eswa.2011.06.031 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.eswa.2011.06.031 |
en |
heal.language |
English |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
The bacterial foraging optimization (BFO) algorithm is a popular stochastic, population-based optimization technique that can be applied to a wide range of problems. Two are the major issues the BFO algorithm is confronted with: first, the foraging mechanism of BFO might in some cases induce the attraction of bacteria gathered near the global optimum by bacteria gathered to local optima, thus slowing down the whole population convergence. Second. BFO is susceptible to the curse-of-dimensionality, which makes it significantly harder to find the global optimum of a high-dimensional problem, compared to a low-dimensional problem with similar topology. In this paper, we introduce a novel BFO-based optimization algorithm aiming to address these issues, the synergetic bacterial swarming optimization (SBSO) algorithm. Our novel approach consists of: (i) the introduction of the swarming dynamics of the particle swarm optimization algorithm in the context of BFO, in order to ameliorate the convergence issues of the BFO bacteria foraging mechanism; and (ii) the utilization of multiple populations to optimize different components of the solution vector cooperatively, so as to mitigate the curse-of-dimensionality issues of the algorithm. We demonstrate the efficacy of our approach on several benchmark optimization problems. (C) 2011 Elsevier Ltd. All rights reserved. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
Expert Systems with Applications |
en |
dc.identifier.doi |
10.1016/j.eswa.2011.06.031 |
en |
dc.identifier.isi |
ISI:000295193400103 |
en |
dc.identifier.volume |
38 |
en |
dc.identifier.issue |
12 |
en |
dc.identifier.spage |
15332 |
en |
dc.identifier.epage |
15343 |
en |