dc.contributor.author |
Tzotsos, A |
en |
dc.contributor.author |
Karantzalos, K |
en |
dc.contributor.author |
Argialas, D |
en |
dc.date.accessioned |
2014-03-01T01:36:32Z |
|
dc.date.available |
2014-03-01T01:36:32Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.issn |
0924-2716 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/21325 |
|
dc.subject |
Analysis |
en |
dc.subject |
Automation |
en |
dc.subject |
Classification |
en |
dc.subject |
Segmentation |
en |
dc.subject |
Simplification |
en |
dc.subject.classification |
Geography, Physical |
en |
dc.subject.classification |
Geosciences, Multidisciplinary |
en |
dc.subject.classification |
Remote Sensing |
en |
dc.subject.classification |
Imaging Science & Photographic Technology |
en |
dc.subject.other |
Analysis |
en |
dc.subject.other |
Classification |
en |
dc.subject.other |
Classification framework |
en |
dc.subject.other |
Classification procedure |
en |
dc.subject.other |
Data sets |
en |
dc.subject.other |
Image objects |
en |
dc.subject.other |
Kernel-based learning |
en |
dc.subject.other |
Levelings |
en |
dc.subject.other |
Multi-spectral |
en |
dc.subject.other |
Multiscale segmentation |
en |
dc.subject.other |
Nonlinear scale |
en |
dc.subject.other |
Nonlinear scale space |
en |
dc.subject.other |
Object based image analysis |
en |
dc.subject.other |
Object extraction |
en |
dc.subject.other |
Object oriented |
en |
dc.subject.other |
Observation data |
en |
dc.subject.other |
Passive remote sensing |
en |
dc.subject.other |
Quantitative evaluation |
en |
dc.subject.other |
Remote sensing data |
en |
dc.subject.other |
SAR Images |
en |
dc.subject.other |
Scale-space representation |
en |
dc.subject.other |
Segmentation |
en |
dc.subject.other |
Simplification |
en |
dc.subject.other |
Space-borne sensor |
en |
dc.subject.other |
Spectral properties |
en |
dc.subject.other |
Very high resolution |
en |
dc.subject.other |
Adaptive filtering |
en |
dc.subject.other |
Classification (of information) |
en |
dc.subject.other |
Crystal orientation |
en |
dc.subject.other |
Image analysis |
en |
dc.subject.other |
Image classification |
en |
dc.subject.other |
Image segmentation |
en |
dc.subject.other |
Nonlinear analysis |
en |
dc.subject.other |
Remote sensing |
en |
dc.subject.other |
Space optics |
en |
dc.subject.other |
Quality control |
en |
dc.subject.other |
aerial photograph |
en |
dc.subject.other |
anisotropy |
en |
dc.subject.other |
automation |
en |
dc.subject.other |
data set |
en |
dc.subject.other |
image analysis |
en |
dc.subject.other |
image classification |
en |
dc.subject.other |
nonlinearity |
en |
dc.subject.other |
remote sensing |
en |
dc.subject.other |
satellite data |
en |
dc.subject.other |
segmentation |
en |
dc.title |
Object-based image analysis through nonlinear scale-space filtering |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.isprsjprs.2010.07.001 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.isprsjprs.2010.07.001 |
en |
heal.language |
English |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
In this research, an object-oriented image classification framework was developed which incorporates nonlinear scale-space filtering into the multi-scale segmentation and classification procedures. Morphological levelings, which possess a number of desired spatial and spectral properties, were associated with anisotropically diffused markers towards the construction of nonlinear scale spaces. Image objects were computed at various scales and were connected to a kernel-based learning machine for the classification of various earth-observation data from both active and passive remote sensing sensors. Unlike previous object-based image analysis approaches, the scale hierarchy is implicitly derived from scale-space representation properties. The developed approach does not require the tuning of any parameter of those which control the multi-scale segmentation and object extraction procedure, like shape, color, texture, etc. The developed object-oriented image classification framework was applied on a number of remote sensing data from different airborne and spaceborne sensors including SAR images, high and very high resolution panchromatic and multispectral aerial and satellite datasets. The very promising experimental results along with the performed qualitative and quantitative evaluation demonstrate the potential of the proposed approach. (C) 2010 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCIENCE BV |
en |
heal.journalName |
ISPRS Journal of Photogrammetry and Remote Sensing |
en |
dc.identifier.doi |
10.1016/j.isprsjprs.2010.07.001 |
en |
dc.identifier.isi |
ISI:000286854900001 |
en |
dc.identifier.volume |
66 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
2 |
en |
dc.identifier.epage |
16 |
en |