HEAL DSpace

On a strain gradient elastic Timoshenko beam model

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Lazopoulos, KA en
dc.contributor.author Lazopoulos en
dc.date.accessioned 2014-03-01T01:36:32Z
dc.date.available 2014-03-01T01:36:32Z
dc.date.issued 2011 en
dc.identifier.issn 0044-2267 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/21328
dc.subject Gradient elastic theory en
dc.subject Stiffer en
dc.subject Timoshenko beam. en
dc.subject.classification Mathematics, Applied en
dc.subject.classification Mechanics en
dc.subject.other COUPLE STRESS THEORY en
dc.subject.other SCREW DISLOCATION en
dc.subject.other PLATES en
dc.subject.other STABILITY en
dc.title On a strain gradient elastic Timoshenko beam model en
heal.type journalArticle en
heal.identifier.primary 10.1002/zamm.200900368 en
heal.identifier.secondary http://dx.doi.org/10.1002/zamm.200900368 en
heal.language English en
heal.publicationDate 2011 en
heal.abstract Considering the influence of the microstructure, the Timoshenko beam model is revisited, invoking Mindlin's strain gradient strain energy density function. The equations of motion are derived and the bending equilibrium equations are discussed. The adopted strain energy density function includes new terms. Those terms introduce the strong effect of the beam cross-section area. The influence of those terms is more evident in thin beams where the cross-section area is far bigger than its moment of inertia. Applications have been worked out exhibiting the difference of the present theory not only from the classical Timoshenko beam, but also from the existing variations including couple stresses. The solution of the static problem, for a simply supported beam loaded by a force at the middle of the beam, is defined and the first (least) eigen-frequency is found. The present model is proved to be stiffer. Considering the influence of the microstructure, the Timoshenko beam model is revisited, invoking Mindlin's strain gradient strain energy density function. The equations of motion are derived and the bending equilibrium equations are discussed. The adopted strain energy density function includes new terms. Those terms introduce the strong effect of the beam cross-section area. The influence of those terms is more evident in thin beams where the cross-section area is far bigger than its moment of inertia. Applications have been worked out exhibiting the difference of the present theory not only from the classical Timoshenko beam, but also from the existing variations including couple stresses. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. en
heal.publisher WILEY-BLACKWELL en
heal.journalName ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik en
dc.identifier.doi 10.1002/zamm.200900368 en
dc.identifier.isi ISI:000297304300003 en
dc.identifier.volume 91 en
dc.identifier.issue 11 en
dc.identifier.spage 875 en
dc.identifier.epage 882 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής