HEAL DSpace

On the algorithmic effectiveness of digraph decompositions and complexity measures

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Lampis, M en
dc.contributor.author Kaouri, G en
dc.contributor.author Mitsou, V en
dc.date.accessioned 2014-03-01T01:36:33Z
dc.date.available 2014-03-01T01:36:33Z
dc.date.issued 2011 en
dc.identifier.issn 1572-5286 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/21331
dc.subject Digraph decompositions en
dc.subject Parameterized complexity en
dc.subject Treewidth en
dc.subject.classification Operations Research & Management Science en
dc.subject.classification Mathematics, Applied en
dc.subject.other Complexity measures en
dc.subject.other Digraph decomposition en
dc.subject.other Graph problems en
dc.subject.other Hamiltonian circuits en
dc.subject.other Hardness result en
dc.subject.other Input graphs en
dc.subject.other MAX CUT en
dc.subject.other NP-hard en
dc.subject.other Parameterized en
dc.subject.other Parameterized complexity en
dc.subject.other Pathwidth en
dc.subject.other Polynomial algorithm en
dc.subject.other Tree-width en
dc.subject.other Algorithms en
dc.subject.other Graph theory en
dc.subject.other Hamiltonians en
dc.subject.other Parameterization en
dc.subject.other Parallel processing systems en
dc.title On the algorithmic effectiveness of digraph decompositions and complexity measures en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.disopt.2010.03.010 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.disopt.2010.03.010 en
heal.language English en
heal.publicationDate 2011 en
heal.abstract We place our focus on the gap between treewidth's success in producing fixed-parameter polynomial algorithms for hard graph problems, and specifically HAMILTONIAN CIRCUIT and MAX CUT, and the failure of its directed variants (directed treewidth (Johnson et al., 2001 [13]), DAG-width (Obdrzalek, 20061141) and Kelly-width (Hunter and Kreutzer, 2007[15]) to replicate it in the realm of digraphs. We answer the question of why this gap exists by giving two hardness results: we show that DIRECTED HAMILTONIAN CIRCUIT is W[2]-hard when the parameter is the width of the input graph, for any of these widths, and that MAX DI CUT remains NP-hard even when restricted to DAGs, which have the minimum possible width under all these definitions. Along the way, we extend our reduction for DIRECTED HAMILTONIAN CIRCUIT to show that the related MINIMUM LEAF OUTBRANCHING problem is also W[2]-hard when naturally parameterized by the number of leaves of the solution, even if the input graph has constant width. All our results also apply to directed pathwidth and cycle rank. (C) 2010 Elsevier B.V. All rights reserved. en
heal.publisher ELSEVIER SCIENCE BV en
heal.journalName Discrete Optimization en
dc.identifier.doi 10.1016/j.disopt.2010.03.010 en
dc.identifier.isi ISI:000289018300012 en
dc.identifier.volume 8 en
dc.identifier.issue 1 en
dc.identifier.spage 129 en
dc.identifier.epage 138 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής