dc.contributor.author |
Papageorgiou, NS |
en |
dc.contributor.author |
Papalini, F |
en |
dc.date.accessioned |
2014-03-01T01:36:33Z |
|
dc.date.available |
2014-03-01T01:36:33Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.issn |
1536-1365 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/21336 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-80051966401&partnerID=40&md5=ed83bed624a1d7e2b555eacb417cdf2b |
en |
dc.subject |
Nonsmooth second deformation theorem |
en |
dc.subject |
Periodic problem |
en |
dc.subject |
Scalar p-Laplacian |
en |
dc.subject |
Three nontrivial solutions |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
EQUATIONS |
en |
dc.title |
On the existence of three nontrivial solutions for periodic problems driven by the scalar p-Laplacian |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
We consider a nonlinear periodic problem driven by the scalar p-Laplacian with a nonsmooth potential function. First we establish an alternative minimax expression for the first nonzero eigenvalue for the negative periodic scalar p-Laplacian and then using it we prove the existence of three nontrivial solutions, two of which have constant sign. Our approach is variational, based on the nonsmooth critical point theory. |
en |
heal.publisher |
ADVANCED NONLINEAR STUDIES, INC |
en |
heal.journalName |
Advanced Nonlinear Studies |
en |
dc.identifier.isi |
ISI:000288133200013 |
en |
dc.identifier.volume |
11 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
455 |
en |
dc.identifier.epage |
471 |
en |