dc.contributor.author |
Voulodimos, A |
en |
dc.contributor.author |
Kosmopoulos, D |
en |
dc.contributor.author |
Veres, G |
en |
dc.contributor.author |
Grabner, H |
en |
dc.contributor.author |
Van Gool, L |
en |
dc.contributor.author |
Varvarigou, T |
en |
dc.date.accessioned |
2014-03-01T01:36:34Z |
|
dc.date.available |
2014-03-01T01:36:34Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.issn |
0893-6080 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/21343 |
|
dc.subject |
Activity recognition |
en |
dc.subject |
ESN |
en |
dc.subject |
Fusion |
en |
dc.subject |
Genetic algorithm |
en |
dc.subject |
HMM |
en |
dc.subject |
Workflow |
en |
dc.subject.classification |
Computer Science, Artificial Intelligence |
en |
dc.subject.other |
Activity patterns |
en |
dc.subject.other |
Activity recognition |
en |
dc.subject.other |
Echo state networks |
en |
dc.subject.other |
ESN |
en |
dc.subject.other |
HMM |
en |
dc.subject.other |
Industrial environments |
en |
dc.subject.other |
Inherent complexity |
en |
dc.subject.other |
Input streams |
en |
dc.subject.other |
Limited visibility |
en |
dc.subject.other |
Multi-cameras |
en |
dc.subject.other |
Novel methods |
en |
dc.subject.other |
On-line classification |
en |
dc.subject.other |
Prior knowledge |
en |
dc.subject.other |
Time series classifications |
en |
dc.subject.other |
Tracking moving targets |
en |
dc.subject.other |
Visual tasks |
en |
dc.subject.other |
Work-flows |
en |
dc.subject.other |
Workflow |
en |
dc.subject.other |
Workflow monitoring |
en |
dc.subject.other |
Genetic algorithms |
en |
dc.subject.other |
Hidden Markov models |
en |
dc.subject.other |
Time series |
en |
dc.subject.other |
Vision |
en |
dc.subject.other |
article |
en |
dc.subject.other |
artificial neural network |
en |
dc.subject.other |
automation |
en |
dc.subject.other |
camera |
en |
dc.subject.other |
classification |
en |
dc.subject.other |
echo state network |
en |
dc.subject.other |
genetic algorithm |
en |
dc.subject.other |
hidden Markov model |
en |
dc.subject.other |
industrial area |
en |
dc.subject.other |
intermethod comparison |
en |
dc.subject.other |
online monitoring |
en |
dc.subject.other |
priority journal |
en |
dc.subject.other |
time series analysis |
en |
dc.subject.other |
visibility |
en |
dc.subject.other |
workflow |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Artificial Intelligence |
en |
dc.subject.other |
Calibration |
en |
dc.subject.other |
Computer Simulation |
en |
dc.subject.other |
Databases, Factual |
en |
dc.subject.other |
Image Processing, Computer-Assisted |
en |
dc.subject.other |
Industry |
en |
dc.subject.other |
Neural Networks (Computer) |
en |
dc.subject.other |
Pattern Recognition, Automated |
en |
dc.subject.other |
Video Recording |
en |
dc.subject.other |
Vision, Ocular |
en |
dc.subject.other |
Workflow |
en |
dc.title |
Online classification of visual tasks for industrial workflow monitoring |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.neunet.2011.06.001 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.neunet.2011.06.001 |
en |
heal.language |
English |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
Modelling and classification of time series stemming from visual workflows is a very challenging problem due to the inherent complexity of the activity patterns involved and the difficulty in tracking moving targets. In this paper, we propose a framework for classification of visual tasks in industrial environments. We propose a novel method to automatically segment the input stream and to classify the resulting segments using prior knowledge and hidden Markov models (HMMs), combined through a genetic algorithm. We compare this method to an echo state network (ESN) approach, which is appropriate for general-purpose time-series classification. In addition, we explore the applicability of several fusion schemes for multicamera configuration in order to mitigate the problem of limited visibility and occlusions. The performance of the suggested approaches is evaluated on real-world visual behaviour scenarios. (C) 2011 Elsevier Ltd. All rights reserved. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
Neural Networks |
en |
dc.identifier.doi |
10.1016/j.neunet.2011.06.001 |
en |
dc.identifier.isi |
ISI:000295105700009 |
en |
dc.identifier.volume |
24 |
en |
dc.identifier.issue |
8 |
en |
dc.identifier.spage |
852 |
en |
dc.identifier.epage |
860 |
en |