HEAL DSpace

Predicting Motorway Traffic Performance by Data Fusion of Local Sensor Data and Electronic Toll Collection Data

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Heilmann, B en
dc.contributor.author El Faouzi, N-E en
dc.contributor.author de Mouzon, O en
dc.contributor.author Hainitz, N en
dc.contributor.author Koller, H en
dc.contributor.author Bauer, D en
dc.contributor.author Antoniou, C en
dc.date.accessioned 2014-03-01T01:36:40Z
dc.date.available 2014-03-01T01:36:40Z
dc.date.issued 2011 en
dc.identifier.issn 1093-9687 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/21385
dc.subject.classification Computer Science, Interdisciplinary Applications en
dc.subject.classification Construction & Building Technology en
dc.subject.classification Engineering, Civil en
dc.subject.other Austria en
dc.subject.other Computational performance en
dc.subject.other Correlation analysis en
dc.subject.other Electronic toll collection en
dc.subject.other Electronic toll collection systems en
dc.subject.other Free flow en
dc.subject.other Heavy goods vehicles en
dc.subject.other Historical database en
dc.subject.other Linear Kalman filters en
dc.subject.other Local sensors en
dc.subject.other Macroscopic model en
dc.subject.other Memory length en
dc.subject.other Non-parametric en
dc.subject.other Prediction accuracy en
dc.subject.other Prediction horizon en
dc.subject.other Prediction methods en
dc.subject.other Speed-density en
dc.subject.other State-space models en
dc.subject.other Time interval en
dc.subject.other Traffic management centers en
dc.subject.other Traffic performance en
dc.subject.other Traffic state en
dc.subject.other Transition state en
dc.subject.other Automobiles en
dc.subject.other Forecasting en
dc.subject.other Highway traffic control en
dc.subject.other Information fusion en
dc.subject.other Pattern recognition en
dc.subject.other Toll collection en
dc.subject.other Toll highways en
dc.subject.other Sensor data fusion en
dc.subject.other correlation en
dc.subject.other database en
dc.subject.other Kalman filter en
dc.subject.other motorway en
dc.subject.other prediction en
dc.subject.other traffic management en
dc.subject.other Austria en
dc.subject.other GB virus C en
dc.title Predicting Motorway Traffic Performance by Data Fusion of Local Sensor Data and Electronic Toll Collection Data en
heal.type journalArticle en
heal.identifier.primary 10.1111/j.1467-8667.2010.00696.x en
heal.identifier.secondary http://dx.doi.org/10.1111/j.1467-8667.2010.00696.x en
heal.language English en
heal.publicationDate 2011 en
heal.abstract This article proposes data fusion from different sources to improve estimation and prediction accuracy of traffic states on motorways. This is demonstrated in two case studies on an intraurban and an interurban motorway section in Austria. Data fusion in this case combines local detector data and speed data from the Electronic Toll Collection (ETC) system for heavy goods vehicles (HGV). A macroscopic model for open motorway sections has been used to estimate passenger car and HGV density, applying a standard state-space model and a linear Kalman filter. The resulting historical database of 4 months of speed-density patterns has been used as a basis for pattern recognition. A nonparametric kernel predictor with memory length of 9 and 18 hours has been used to predict HGV speed for a prediction horizon of 15 minutes to 2 hours. Results show good overall prediction accuracy. Correlation analysis showed little bias of predicted speed for free flow and congested time intervals, whereas transition states between free flow and congestion were frequently biased. Prediction accuracy can be improved by applying a combination of different prediction methods. On the other hand, computational performance of the prediction has to be further improved prior to implementation in a traffic management center. © 2010 Computer-Aided Civil and Infrastructure Engineering. en
heal.publisher WILEY-BLACKWELL en
heal.journalName Computer-Aided Civil and Infrastructure Engineering en
dc.identifier.doi 10.1111/j.1467-8667.2010.00696.x en
dc.identifier.isi ISI:000292367900005 en
dc.identifier.volume 26 en
dc.identifier.issue 6 en
dc.identifier.spage 451 en
dc.identifier.epage 463 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής