HEAL DSpace

Relevance feedback approach for image retrieval combining support vector machines and adapted Gaussian mixture models

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Marakakis, A en
dc.contributor.author Siolas, G en
dc.contributor.author Galatsanos, N en
dc.contributor.author Likas, A en
dc.contributor.author Stafylopatis, A en
dc.date.accessioned 2014-03-01T01:36:42Z
dc.date.available 2014-03-01T01:36:42Z
dc.date.issued 2011 en
dc.identifier.issn 1751-9659 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/21407
dc.subject.classification Engineering, Electrical & Electronic en
dc.subject.other Common models en
dc.subject.other Content-Based Image Retrieval en
dc.subject.other Gaussian Mixture Model en
dc.subject.other Gaussian mixtures en
dc.subject.other Image database en
dc.subject.other Image representations en
dc.subject.other Kernel function en
dc.subject.other Kullback-Leibler en
dc.subject.other Negative examples en
dc.subject.other Numerical experiments en
dc.subject.other Relevance feedback en
dc.subject.other Feedback en
dc.subject.other Image retrieval en
dc.subject.other Probability distributions en
dc.subject.other Support vector machines en
dc.title Relevance feedback approach for image retrieval combining support vector machines and adapted Gaussian mixture models en
heal.type journalArticle en
heal.identifier.primary 10.1049/iet-ipr.2009.0402 en
heal.identifier.secondary http://dx.doi.org/10.1049/iet-ipr.2009.0402 en
heal.language English en
heal.publicationDate 2011 en
heal.abstract A new relevance feedback (RF) approach for content-based image retrieval (CBIR) is presented, which uses Gaussian mixture (GM) models as image representations. The GM of each image is obtained as an adaptation of a universal GM which models the probability distribution of the features of the image database. In each RF round, the positive and negative examples provided by the user until the current round are used to train a support vector machine (SVM) to distinguish between the relevant and irrelevant images according to the preferences of the user. In order to quantify the similarity between two images represented as GMs, Kullback-Leibler (KL) approximations are employed, the computation of which can be further accelerated taking advantage from the fact that the GMs of the images are all refined from a common model. An appropriate kernel function, based on this distance between GMs, is used to make possible the incorporation of GMs in the SVM framework. Finally, comparative numerical experiments that demonstrate the merits of the proposed RF methodology and the advantages of using GMs for image modelling are provided. © 2011 The Institution of Engineering and Technology. en
heal.publisher INST ENGINEERING TECHNOLOGY-IET en
heal.journalName IET Image Processing en
dc.identifier.doi 10.1049/iet-ipr.2009.0402 en
dc.identifier.isi ISI:000292961300001 en
dc.identifier.volume 5 en
dc.identifier.issue 6 en
dc.identifier.spage 531 en
dc.identifier.epage 540 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής