HEAL DSpace

Rolling element bearing fault detection in industrial environments based on a K-means clustering approach

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Yiakopoulos, CT en
dc.contributor.author Gryllias, KC en
dc.contributor.author Antoniadis, IA en
dc.date.accessioned 2014-03-01T01:36:43Z
dc.date.available 2014-03-01T01:36:43Z
dc.date.issued 2011 en
dc.identifier.issn 0957-4174 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/21412
dc.subject Condition monitoring en
dc.subject Fault detection en
dc.subject K-means clustering en
dc.subject Vibration analysis en
dc.subject Rolling element bearings en
dc.subject.classification Computer Science, Artificial Intelligence en
dc.subject.classification Engineering, Electrical & Electronic en
dc.subject.classification Operations Research & Management Science en
dc.subject.other ARTIFICIAL NEURAL-NETWORKS en
dc.subject.other SUPPORT VECTOR MACHINES en
dc.subject.other CORRELATION DIMENSION en
dc.subject.other GENETIC ALGORITHMS en
dc.subject.other DIAGNOSIS en
dc.subject.other GEAR en
dc.title Rolling element bearing fault detection in industrial environments based on a K-means clustering approach en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.eswa.2010.08.083 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.eswa.2010.08.083 en
heal.language English en
heal.publicationDate 2011 en
heal.abstract A K-means clustering approach is proposed for the automated diagnosis of defective rolling element bearings. Since K-means clustering is an unsupervised learning procedure, the method can be directly implemented to measured vibration data. Thus, the need for training the method with data measured on the specific machine under defective bearing conditions is eliminated. This fact consists the major advantage of the method, especially in industrial environments. Critical to the success of the method is the feature set used, which consists of a set of appropriately selected frequency-domain parameters, extracted both from the raw signal, as well as from the signal envelope, as a result of the engineering expertise, gained from the understanding of the physical behavior of defective rolling element bearings. Other advantages of the method are its ease of programming, simplicity and robustness. In order to overcome the sensitivity of the method to the choice of the initial cluster centers, the initial centers are selected using features extracted from simulated signals, resulting from a well established model for the dynamic behavior of defective rolling element bearings. Then, the method is implemented as a two-stage procedure. At the first step, the method decides whether a bearing fault exists or not. At the second step, the type of the defect (e.g. inner or outer race) is identified. The effectiveness of the method is tested in one literature established laboratory test case and in three different industrial test cases. Each test case includes successive measurements from bearings under different types of defects. In all cases, the method presents a 100% classification success. Contrarily, a K-means clustering approach, which is based on typical statistical time domain based features, presents an unstable classification behavior. (C) 2010 Elsevier Ltd. All rights reserved. en
heal.publisher PERGAMON-ELSEVIER SCIENCE LTD en
heal.journalName EXPERT SYSTEMS WITH APPLICATIONS en
dc.identifier.doi 10.1016/j.eswa.2010.08.083 en
dc.identifier.isi ISI:000284863200172 en
dc.identifier.volume 38 en
dc.identifier.issue 3 en
dc.identifier.spage 2888 en
dc.identifier.epage 2911 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής