HEAL DSpace

Selection of window sizes for optimizing occupational comfort and hygiene based on computational fluid dynamics and neural networks

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Stavrakakis, GM en
dc.contributor.author Karadimou, DP en
dc.contributor.author Zervas, PL en
dc.contributor.author Sarimveis, H en
dc.contributor.author Markatos, NC en
dc.date.accessioned 2014-03-01T01:37:03Z
dc.date.available 2014-03-01T01:37:03Z
dc.date.issued 2011 en
dc.identifier.issn 0360-1323 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/21432
dc.subject Artificial neural networks en
dc.subject Computational fluid dynamics en
dc.subject Indoor air quality en
dc.subject Thermal comfort en
dc.subject Window sizes optimization en
dc.subject.classification Construction & Building Technology en
dc.subject.classification Engineering, Environmental en
dc.subject.classification Engineering, Civil en
dc.subject.other Air-conditioned buildings en
dc.subject.other Airflow patterns en
dc.subject.other Artificial Neural Network en
dc.subject.other CFD models en
dc.subject.other Computational fluid en
dc.subject.other Computational fluid dynamics models en
dc.subject.other Design guidelines en
dc.subject.other Indoor air quality en
dc.subject.other Indoor environment en
dc.subject.other Input-output data en
dc.subject.other Mean values en
dc.subject.other Meta model en
dc.subject.other Naturally ventilated buildings en
dc.subject.other Optimization problems en
dc.subject.other Radial basis functions en
dc.subject.other Thermal comfort index en
dc.subject.other Ventilation effectiveness en
dc.subject.other Weather conditions en
dc.subject.other Window Size en
dc.subject.other Window sizes optimization en
dc.subject.other Air en
dc.subject.other Air quality en
dc.subject.other Architectural design en
dc.subject.other Carbon dioxide en
dc.subject.other Computational fluid dynamics en
dc.subject.other Computer simulation en
dc.subject.other Fluid dynamics en
dc.subject.other Indoor air pollution en
dc.subject.other Optimization en
dc.subject.other Radial basis function networks en
dc.subject.other Thermal comfort en
dc.subject.other Ventilation en
dc.subject.other Volatile organic compounds en
dc.subject.other Neural networks en
dc.subject.other air quality en
dc.subject.other airflow en
dc.subject.other artificial neural network en
dc.subject.other boundary condition en
dc.subject.other building en
dc.subject.other carbon dioxide en
dc.subject.other computational fluid dynamics en
dc.subject.other database en
dc.subject.other flow pattern en
dc.subject.other indoor air en
dc.subject.other optimization en
dc.subject.other ventilation en
dc.subject.other volatile organic compound en
dc.subject.other Papaya mosaic virus en
dc.title Selection of window sizes for optimizing occupational comfort and hygiene based on computational fluid dynamics and neural networks en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.buildenv.2010.07.021 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.buildenv.2010.07.021 en
heal.language English en
heal.publicationDate 2011 en
heal.abstract The present paper presents a novel computational method to optimize window sizes for thermal comfort and indoor air quality in naturally ventilated buildings. The methodology is demonstrated by means of a prototype case, which corresponds to a single-sided naturally ventilated apartment. Initially, the airflow in and around the building is simulated using a Computational Fluid Dynamics model. Local prevailing weather conditions are imposed in the CFD model as inlet boundary conditions. The produced airflow patterns are utilized to predict thermal comfort indices, i.e. the PMV and its modifications for non-air-conditioned buildings, as well as indoor air quality indices, such as ventilation effectiveness based on carbon dioxide and volatile organic compounds removal. Mean values of these indices (output/objective variables) within the occupied zone are calculated for different window sizes (input/design variables), to generate a database of input output data pairs. The database is then used to train and validate Radial Basis Function Artificial Neural Network input-output "meta-models". The produced meta-models are used to formulate an optimization problem, which takes into account special constraints recommended by design guidelines. It is concluded that the proposed methodology determines appropriate windows architectural designs for pleasant and healthy indoor environments. (C) 2010 Elsevier Ltd. All rights reserved. en
heal.publisher PERGAMON-ELSEVIER SCIENCE LTD en
heal.journalName Building and Environment en
dc.identifier.doi 10.1016/j.buildenv.2010.07.021 en
dc.identifier.isi ISI:000284348400002 en
dc.identifier.volume 46 en
dc.identifier.issue 2 en
dc.identifier.spage 298 en
dc.identifier.epage 314 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής