dc.contributor.author |
Tyralis, H |
en |
dc.contributor.author |
Koutsoyiannis, D |
en |
dc.date.accessioned |
2014-03-01T01:37:05Z |
|
dc.date.available |
2014-03-01T01:37:05Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.issn |
14363240 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/21440 |
|
dc.subject |
Hurst parameter estimators |
en |
dc.subject |
Hurst phenomenon |
en |
dc.subject |
Hurst-Kolmogorov behaviour |
en |
dc.subject |
Hydrological estimation |
en |
dc.subject |
Hydrological statistics |
en |
dc.subject |
Long term persistence |
en |
dc.subject.other |
Hurst parameter |
en |
dc.subject.other |
Hurst phenomenon |
en |
dc.subject.other |
Hydrological estimation |
en |
dc.subject.other |
Hydrological statistics |
en |
dc.subject.other |
Kolmogorov |
en |
dc.subject.other |
Long term |
en |
dc.subject.other |
Computational complexity |
en |
dc.subject.other |
Maximum likelihood estimation |
en |
dc.subject.other |
Random processes |
en |
dc.subject.other |
Stochastic systems |
en |
dc.subject.other |
Time series |
en |
dc.subject.other |
Parameter estimation |
en |
dc.subject.other |
computer simulation |
en |
dc.subject.other |
estimation method |
en |
dc.subject.other |
hydrology |
en |
dc.subject.other |
least squares method |
en |
dc.subject.other |
maximum likelihood analysis |
en |
dc.subject.other |
numerical model |
en |
dc.subject.other |
parameterization |
en |
dc.subject.other |
performance assessment |
en |
dc.subject.other |
stochasticity |
en |
dc.subject.other |
time series analysis |
en |
dc.title |
Simultaneous estimation of the parameters of the Hurst-Kolmogorov stochastic process |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s00477-010-0408-x |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s00477-010-0408-x |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
Various methods for estimating the self-similarity parameter (Hurst parameter, H) of a Hurst-Kolmogorov stochastic process (HKp) from a time series are available. Most of them rely on some asymptotic properties of processes with Hurst-Kolmogorov behaviour and only estimate the self-similarity parameter. Here we show that the estimation of the Hurst parameter affects the estimation of the standard deviation, a fact that was not given appropriate attention in the literature. We propose the least squares based on variance estimator, and we investigate numerically its performance, which we compare to the least squares based on standard deviation estimator, as well as the maximum likelihood estimator after appropriate streamlining of the latter. These three estimators rely on the structure of the HKp and estimate simultaneously its Hurst parameter and standard deviation. In addition, we test the performance of the three methods for a range of sample sizes and H values, through a simulation study and we compare it with other estimators of the literature. © 2010 Springer-Verlag. |
en |
heal.journalName |
Stochastic Environmental Research and Risk Assessment |
en |
dc.identifier.doi |
10.1007/s00477-010-0408-x |
en |
dc.identifier.volume |
25 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
21 |
en |
dc.identifier.epage |
33 |
en |