dc.contributor.author |
Yannakakis, N |
en |
dc.date.accessioned |
2014-03-01T01:37:07Z |
|
dc.date.available |
2014-03-01T01:37:07Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.issn |
1877-0533 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/21453 |
|
dc.subject |
Coercive operator |
en |
dc.subject |
Cosine of a linear operator |
en |
dc.subject |
Hilbert space characterization |
en |
dc.subject |
Orthogonality relation |
en |
dc.subject |
Positive operator |
en |
dc.subject |
Self-dual Banach space |
en |
dc.subject.other |
VARIATIONAL-INEQUALITIES |
en |
dc.subject.other |
BANACH-SPACES |
en |
dc.subject.other |
OPERATORS |
en |
dc.subject.other |
MONOTONE |
en |
dc.title |
Stampacchia's Property, Self-duality and Orthogonality Relations |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s11228-011-0175-y |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s11228-011-0175-y |
en |
heal.language |
English |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
We show that if the conclusion of the well known Stampacchia Theorem on variational inequalities holds on a real Banach space X, then X is isomorphic to a Hilbert space. Motivated by this, we obtain a relevant result concerning self-dual Banach spaces and investigate some connections between properties of orthogonality relations, self-duality and Hilbert space structure. Moreover, we revisit the notion of the cosine of a linear operator and show that it can be used to characterize real Banach spaces that are isomorphic to a Hilbert space. Finally, we present some consequences of our results to quadratic forms and to evolution triples. © 2011 Springer Science+Business Media B.V. |
en |
heal.publisher |
SPRINGER |
en |
heal.journalName |
Set-Valued and Variational Analysis |
en |
dc.identifier.doi |
10.1007/s11228-011-0175-y |
en |
dc.identifier.isi |
ISI:000295143700003 |
en |
dc.identifier.volume |
19 |
en |
dc.identifier.issue |
4 |
en |
dc.identifier.spage |
555 |
en |
dc.identifier.epage |
567 |
en |