dc.contributor.author |
Piperagkas, GS |
en |
dc.contributor.author |
Anastasiadis, AG |
en |
dc.contributor.author |
Hatziargyriou, ND |
en |
dc.date.accessioned |
2014-03-01T01:37:08Z |
|
dc.date.available |
2014-03-01T01:37:08Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.issn |
0378-7796 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/21457 |
|
dc.subject |
Cogeneration |
en |
dc.subject |
Economic dispatch |
en |
dc.subject |
Environmental dispatch |
en |
dc.subject |
Multi-objective particle swarm optimization |
en |
dc.subject |
Wind power estimation |
en |
dc.subject.classification |
Engineering, Electrical & Electronic |
en |
dc.subject.other |
Cogeneration |
en |
dc.subject.other |
Economic dispatch |
en |
dc.subject.other |
Environmental dispatch |
en |
dc.subject.other |
Multi objective particle swarm optimization |
en |
dc.subject.other |
Wind power estimation |
en |
dc.subject.other |
Cogeneration plants |
en |
dc.subject.other |
Computer simulation |
en |
dc.subject.other |
Constraint theory |
en |
dc.subject.other |
Emission control |
en |
dc.subject.other |
Particle swarm optimization (PSO) |
en |
dc.subject.other |
Random variables |
en |
dc.subject.other |
Scheduling |
en |
dc.subject.other |
Stochastic models |
en |
dc.subject.other |
Stochastic systems |
en |
dc.subject.other |
Wind power |
en |
dc.subject.other |
Multiobjective optimization |
en |
dc.title |
Stochastic PSO-based heat and power dispatch under environmental constraints incorporating CHP and wind power units |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.epsr.2010.08.009 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.epsr.2010.08.009 |
en |
heal.language |
English |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
In this paper an extended stochastic multi-objective model for economic dispatch (ED) is proposed, that incorporates in the optimization process heat and power from CHP units and expected wind power. Stochastic restrictions for the CO2, SO2 and NO emissions are used as inequality constraints. The ED problem is solved using a multi-objective particle swarm optimization technique. The available wind power is estimated from a transformation of the wind speed considered as a random variable to wind power. Simulations are performed on the modified IEEE 30 bus network with 2 cogeneration units and actual wind data. Results concerning minimum cost and emissions reduction options are finally drawn. (c) 2010 Elsevier B.V. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCIENCE SA |
en |
heal.journalName |
Electric Power Systems Research |
en |
dc.identifier.doi |
10.1016/j.epsr.2010.08.009 |
en |
dc.identifier.isi |
ISI:000284523800026 |
en |
dc.identifier.volume |
81 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
209 |
en |
dc.identifier.epage |
218 |
en |