HEAL DSpace

Synergetic use of different evaluation, parameterization and search tools within a multilevel optimization platform

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Kampolis, IC en
dc.contributor.author Giannakoglou, KC en
dc.date.accessioned 2014-03-01T01:37:11Z
dc.date.available 2014-03-01T01:37:11Z
dc.date.issued 2011 en
dc.identifier.issn 1568-4946 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/21478
dc.subject Design optimization en
dc.subject Evolutionary algorithms en
dc.subject Gradient-based optimization en
dc.subject Hierarchical search en
dc.subject Metamodels en
dc.subject Multilevel algorithm en
dc.subject.classification Computer Science, Artificial Intelligence en
dc.subject.classification Computer Science, Interdisciplinary Applications en
dc.subject.other Design optimization en
dc.subject.other Gradient-based optimization en
dc.subject.other Hierarchical search en
dc.subject.other Meta model en
dc.subject.other Multilevel algorithm en
dc.subject.other Design en
dc.subject.other Multiobjective optimization en
dc.subject.other Parameterization en
dc.subject.other Shape optimization en
dc.subject.other Evolutionary algorithms en
dc.title Synergetic use of different evaluation, parameterization and search tools within a multilevel optimization platform en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.asoc.2009.12.024 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.asoc.2009.12.024 en
heal.language English en
heal.publicationDate 2011 en
heal.abstract This paper presents the synergetic use of different evaluation tools, parameterization schemes and search methods on the levels of a multilevel optimization platform to efficiently solve single-and multi-objective computationally demanding optimization problems. The platform is formed by a number of levels which concurrently search for optimal solutions, by regularly exchanging promising individual solutions. Each level is associated with a problem-specific evaluation tool with its own accuracy and computational cost, a parameterization scheme which determines the design variables and their mapping to generate individual solutions and a search algorithm which is either a metamodel-assisted evolutionary algorithm or a gradient-based method. The use of the multilevel platform with only one of the aforementioned features changing from level to level was presented in a previous paper by the authors. The present paper shows that the combined use of hierarchical evaluation, hierarchical parameterization and hierarchical search decreases further the computational cost by increasing the efficiency of the optimization method. This is demonstrated on function minimization and aerodynamic shape optimization problems; though only two levels are used herein, this is not a restriction and the optimization platform may accommodate any number of them. (C) 2009 Elsevier B.V. All rights reserved. en
heal.publisher ELSEVIER SCIENCE BV en
heal.journalName Applied Soft Computing Journal en
dc.identifier.doi 10.1016/j.asoc.2009.12.024 en
dc.identifier.isi ISI:000281591300064 en
dc.identifier.volume 11 en
dc.identifier.issue 1 en
dc.identifier.spage 645 en
dc.identifier.epage 651 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής