dc.contributor.author |
Simitzis, J |
en |
dc.contributor.author |
Soulis, S |
en |
dc.contributor.author |
Triantou, D |
en |
dc.contributor.author |
Zoumpoulakis, L |
en |
dc.contributor.author |
Zotali, P |
en |
dc.date.accessioned |
2014-03-01T01:37:12Z |
|
dc.date.available |
2014-03-01T01:37:12Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.issn |
0957-4530 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/21480 |
|
dc.subject.classification |
Engineering, Biomedical |
en |
dc.subject.classification |
Materials Science, Biomaterials |
en |
dc.subject.other |
Biomedical applications |
en |
dc.subject.other |
Copolyesters |
en |
dc.subject.other |
Crystallinities |
en |
dc.subject.other |
Degree of polymerization |
en |
dc.subject.other |
Diffractograms |
en |
dc.subject.other |
Experimental data |
en |
dc.subject.other |
Four-parameter model |
en |
dc.subject.other |
FT-IR spectrum |
en |
dc.subject.other |
Glycolates |
en |
dc.subject.other |
Glycolic acids |
en |
dc.subject.other |
Homopolyesters |
en |
dc.subject.other |
Hydrolytic degradation |
en |
dc.subject.other |
Maximum types |
en |
dc.subject.other |
Molar feed ratio |
en |
dc.subject.other |
Molar ratio |
en |
dc.subject.other |
Orthorhombic crystal system |
en |
dc.subject.other |
Peak intensity |
en |
dc.subject.other |
Poly(glycolic acid) |
en |
dc.subject.other |
Sebacic acid |
en |
dc.subject.other |
Two-parameter models |
en |
dc.subject.other |
Wave numbers |
en |
dc.subject.other |
XRD |
en |
dc.subject.other |
Biological materials |
en |
dc.subject.other |
Degradation |
en |
dc.subject.other |
Ethylene glycol |
en |
dc.subject.other |
Medical applications |
en |
dc.subject.other |
Organic solvents |
en |
dc.subject.other |
Polymerization |
en |
dc.subject.other |
Ethylene |
en |
dc.subject.other |
ethylene glycol |
en |
dc.subject.other |
poly(ethylene sebacate) |
en |
dc.subject.other |
poly(glycolic acid) |
en |
dc.subject.other |
polyester |
en |
dc.subject.other |
unclassified drug |
en |
dc.subject.other |
article |
en |
dc.subject.other |
hydrolysis |
en |
dc.subject.other |
infrared spectroscopy |
en |
dc.subject.other |
priority journal |
en |
dc.subject.other |
synthesis |
en |
dc.subject.other |
X ray diffraction |
en |
dc.title |
Synthesis and characterization of hydrolytically degradable copolyester biomaterials based on glycolic acid, sebacic acid and ethylene glycol |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s10856-011-4463-8 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s10856-011-4463-8 |
en |
heal.language |
English |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
Copolyesters of glycolic acid (G) combined with sebacic acid (S) and ethylene glycol were synthesized in different molar ratios (G: 0-100% and S: 100-0%) and their hydrolytic degradation was studied and correlated with their structures. Based on the FTIR spectra of the homopolyesters and copolyesters and the normalized peak intensity of the I2918, I2848 and I1087 for the corresponding wavenumbers, it is concluded that the I2918 and the I2848 are in accordance with the mean number degree of polymerization of ethylene sebacate units and the I1087 is in accordance with the mean number degree of polymerization of glycolate units. Based on the XRD diffractograms, poly(ethylene sebacate) and poly(glycolic acid) belong to the monoclinic and the orthorhombic crystal system, respectively and both have higher crystallinity than the copolyesters. The experimental data of the hydrolytic degradation were fitted with exponential rise to maximum type functions using two-parameter model and four-parameter model. Three regions can been distinguished for the hydrolytic degradation by decreasing the molar feed ratio of sebacic acid, which are correlated with the changes of crystallinity. Two copolyesters are proposed: first the copolyester with high amount of glycolate units (S10G90) having higher hydrolytic degradation than G100 and second the copolyester with equal amount of glycolate and ethylene sebacate units (S50G50), having lower hydrolytic degradation than G100. These hydrolytically degradable copolyesters are soluble in common organic solvents, opposite to poly(glycolic acid) and could have perspectives for biomedical applications. © 2011 Springer Science+Business Media, LLC. |
en |
heal.publisher |
SPRINGER |
en |
heal.journalName |
Journal of Materials Science: Materials in Medicine |
en |
dc.identifier.doi |
10.1007/s10856-011-4463-8 |
en |
dc.identifier.isi |
ISI:000297621700009 |
en |
dc.identifier.volume |
22 |
en |
dc.identifier.issue |
12 |
en |
dc.identifier.spage |
2673 |
en |
dc.identifier.epage |
2684 |
en |