dc.contributor.author |
Baumhakl, C |
en |
dc.contributor.author |
Karellas, S |
en |
dc.date.accessioned |
2014-03-01T01:37:12Z |
|
dc.date.available |
2014-03-01T01:37:12Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.issn |
0143-8166 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/21482 |
|
dc.subject |
Biomass |
en |
dc.subject |
Fluorescence spectroscopy |
en |
dc.subject |
Gasification |
en |
dc.subject |
Online measurement |
en |
dc.subject |
Tar |
en |
dc.subject.classification |
Optics |
en |
dc.subject.other |
Biomass Gasification |
en |
dc.subject.other |
Cost efficiency |
en |
dc.subject.other |
Efficient systems |
en |
dc.subject.other |
Energy productions |
en |
dc.subject.other |
Energy systems |
en |
dc.subject.other |
Gas analysis |
en |
dc.subject.other |
Gas compositions |
en |
dc.subject.other |
Gas quality |
en |
dc.subject.other |
High precision |
en |
dc.subject.other |
Higher hydrocarbons |
en |
dc.subject.other |
In-process |
en |
dc.subject.other |
In-situ |
en |
dc.subject.other |
Low costs |
en |
dc.subject.other |
Measurement system |
en |
dc.subject.other |
Measurement volume |
en |
dc.subject.other |
Non-intrusive |
en |
dc.subject.other |
Offline |
en |
dc.subject.other |
On-line measurement |
en |
dc.subject.other |
Optical methods |
en |
dc.subject.other |
Optical source |
en |
dc.subject.other |
Product gas |
en |
dc.subject.other |
State-of-the-art methods |
en |
dc.subject.other |
Tar protocol |
en |
dc.subject.other |
Biomass |
en |
dc.subject.other |
Fluorescence |
en |
dc.subject.other |
Fluorescence spectroscopy |
en |
dc.subject.other |
Gases |
en |
dc.subject.other |
Hydrocarbons |
en |
dc.subject.other |
Industrial applications |
en |
dc.subject.other |
Optical engineering |
en |
dc.subject.other |
Spectrum analysis |
en |
dc.subject.other |
Tar |
en |
dc.subject.other |
Gasification |
en |
dc.title |
Tar analysis from biomass gasification by means of online fluorescence spectroscopy |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.optlaseng.2011.02.015 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.optlaseng.2011.02.015 |
en |
heal.language |
English |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
Optical methods in gas analysis are very valuable mainly due to their non-intrusive character. That gives the possibility to use them for in-situ or online measurements with only optical intervention in the measurement volume. In processes like the gasification of biomass, it is of high importance to monitor the gas quality in order to use the product gas in proper machines for energy production following the restrictions in the gas composition but also improving its quality, which leads to high efficient systems. One of the main problems in the biomass gasification process is the formation of tars. These higher hydrocarbons can lead to problems in the operation of the energy system. Up to date, the state of the art method used widely for the determination of tars is a standardized offline measurement system, the so-called "Tar Protocol". The aim of this work is to describe an innovative, online, optical method for determining the tar content of the product gas by means of fluorescence spectroscopy. This method uses optical sources and detectors that can be found in the market at low cost and therefore it is very attractive, especially for industrial applications where cost efficiency followed by medium to high precision are of high importance. (C) 2011 Elsevier Ltd. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCI LTD |
en |
heal.journalName |
Optics and Lasers in Engineering |
en |
dc.identifier.doi |
10.1016/j.optlaseng.2011.02.015 |
en |
dc.identifier.isi |
ISI:000291078500021 |
en |
dc.identifier.volume |
49 |
en |
dc.identifier.issue |
7 |
en |
dc.identifier.spage |
885 |
en |
dc.identifier.epage |
891 |
en |