dc.contributor.author |
Katsikadelis, JT |
en |
dc.date.accessioned |
2014-03-01T01:37:16Z |
|
dc.date.available |
2014-03-01T01:37:16Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.issn |
0898-1221 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/21489 |
|
dc.subject |
Analog equation method |
en |
dc.subject |
Boundary element method |
en |
dc.subject |
Diffusion-wave equation |
en |
dc.subject |
Numerical methods |
en |
dc.subject |
Partial fractional differential equations |
en |
dc.subject |
Viscoelastic membranes |
en |
dc.subject.classification |
Computer Science, Interdisciplinary Applications |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.other |
Analog equation methods |
en |
dc.subject.other |
Boundary elements |
en |
dc.subject.other |
Diffusion wave equation |
en |
dc.subject.other |
Fractional differential equations |
en |
dc.subject.other |
Viscoelastic membranes |
en |
dc.subject.other |
Boundary element method |
en |
dc.subject.other |
Differential equations |
en |
dc.subject.other |
Differentiation (calculus) |
en |
dc.subject.other |
Nonlinear equations |
en |
dc.subject.other |
Wave equations |
en |
dc.subject.other |
Numerical methods |
en |
dc.title |
The BEM for numerical solution of partial fractional differential equations |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.camwa.2011.04.001 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.camwa.2011.04.001 |
en |
heal.language |
English |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
A numerical method is presented for the solution of partial fractional differential equations (FDEs) arising in engineering applications and in general in mathematical physics. The solution procedure applies to both linear and nonlinear problems described by evolution type equations involving fractional time derivatives in bounded domains of arbitrary shape. The method is based on the concept of the analog equation, which in conjunction with the boundary element method (BEM) enables the spatial discretization and converts a partial FDE into a system of coupled ordinary multi-term FDEs. Then this system is solved using the numerical method for the solution of such equations developed recently by Katsikadelis. The method is illustrated by solving second order partial FDEs and its efficiency and accuracy is validated. (C) 2011 Elsevier Ltd. All rights reserved. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
Computers and Mathematics with Applications |
en |
dc.identifier.doi |
10.1016/j.camwa.2011.04.001 |
en |
dc.identifier.isi |
ISI:000294083500007 |
en |
dc.identifier.volume |
62 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
891 |
en |
dc.identifier.epage |
901 |
en |