HEAL DSpace

The effect of water presence on the photocatalytic oxidation of benzene, toluene, ethylbenzene and m-xylene in the gas-phase

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Korologos, CA en
dc.contributor.author Philippopoulos, CJ en
dc.contributor.author Poulopoulos, SG en
dc.date.accessioned 2014-03-01T01:37:19Z
dc.date.available 2014-03-01T01:37:19Z
dc.date.issued 2011 en
dc.identifier.issn 13522310 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/21494
dc.subject BTEX en
dc.subject Langmuir-Hinshelwood kinetics en
dc.subject Titanium dioxide en
dc.subject.other Active site en
dc.subject.other Annular reactors en
dc.subject.other BTEX en
dc.subject.other Continuous stirred tank reactor en
dc.subject.other Detection limits en
dc.subject.other Effect of water en
dc.subject.other Experimental conditions en
dc.subject.other Experimental data en
dc.subject.other Gas-solid en
dc.subject.other Gasphase en
dc.subject.other Kinetic data en
dc.subject.other Kinetic models en
dc.subject.other Langmuir-Hinshelwood kinetics en
dc.subject.other m-Xylene en
dc.subject.other Parts per millions en
dc.subject.other Photocatalytic oxidations en
dc.subject.other Photocatalytic process en
dc.subject.other Photocatalytic reactions en
dc.subject.other Residence time en
dc.subject.other Water concentrations en
dc.subject.other Water vapour en
dc.subject.other Benzene en
dc.subject.other Carbon dioxide en
dc.subject.other Ethylbenzene en
dc.subject.other Isomers en
dc.subject.other Kinetic theory en
dc.subject.other Kinetics en
dc.subject.other Oxidation en
dc.subject.other Ternary systems en
dc.subject.other Titanium en
dc.subject.other Titanium dioxide en
dc.subject.other Toluene en
dc.subject.other Xylene en
dc.subject.other benzene en
dc.subject.other ethylbenzene en
dc.subject.other titanium dioxide en
dc.subject.other toluene en
dc.subject.other xylene en
dc.subject.other adsorption en
dc.subject.other BTEX en
dc.subject.other carbon dioxide en
dc.subject.other catalysis en
dc.subject.other concentration (composition) en
dc.subject.other experimental study en
dc.subject.other gas phase reaction en
dc.subject.other heterogeneity en
dc.subject.other numerical model en
dc.subject.other oxidation en
dc.subject.other oxide en
dc.subject.other photodegradation en
dc.subject.other radiation balance en
dc.subject.other reaction kinetics en
dc.subject.other ultraviolet radiation en
dc.subject.other water vapor en
dc.subject.other article en
dc.subject.other gas chromatography en
dc.subject.other mass spectrometry en
dc.subject.other oxidation en
dc.subject.other photocatalysis en
dc.subject.other photolysis en
dc.subject.other priority journal en
dc.subject.other ultraviolet irradiation en
dc.subject.other water vapor en
dc.title The effect of water presence on the photocatalytic oxidation of benzene, toluene, ethylbenzene and m-xylene in the gas-phase en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.atmosenv.2011.09.038 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.atmosenv.2011.09.038 en
heal.publicationDate 2011 en
heal.abstract In the present work, the gas-solid heterogeneous photocatalytic oxidation of benzene, toluene, ethylbenzene and m-xylene (BTEX) over UV-irradiated titanium dioxide was studied in an annular reactor operated in the CSTR (continuous stirred-tank reactor) mode. GC-FID and GC-MS were used for analysing reactor inlet and outlet streams. Initial BTEX concentrations were in the low parts per million (ppmv) range, whereas the water concentration was in the range of 0-35,230 ppmv and the residence time varied from 50 to 210 s. The effect of water addition on the photocatalytic process showed strong dependence on the type of the BTEX and the water vapour concentration. The increase in residence time resulted in a considerable increase in the conversion achieved for all compounds and experimental conditions. There was a clear interaction between residence time and water presence regarding the effect on conversions achieved. It was established that conversions over 95% could be achieved by adjusting appropriately the experimental conditions and especially the water concentration in the reactor. In all cases, no by-products were detected above the detection limit and carbon dioxide was the only compound detected. Finally, various Langmuir-Hinshelwood kinetic models have been tested in the analysis of the experimental data obtained. The kinetic data obtained confirmed that water had an active participation in the photocatalytic reactions of benzene, toluene, ethylbenzene and m-xylene since the model involving reaction of BTEX and water adsorbed on different active sites yielded the most successful fitting to the experimental results for the first three compounds, whereas the kinetic model based on the assumption that reaction between VOC and water dissociatively adsorbed on the photocatalyst takes place was the most appropriate in the case of m-xylene. © 2011 Elsevier Ltd. en
heal.journalName Atmospheric Environment en
dc.identifier.doi 10.1016/j.atmosenv.2011.09.038 en
dc.identifier.volume 45 en
dc.identifier.issue 39 en
dc.identifier.spage 7089 en
dc.identifier.epage 7095 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής