HEAL DSpace

The effects of scheduling, workload type and consolidation scenarios on virtual machine performance and their prediction through optimized artificial neural networks

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Kousiouris, G en
dc.contributor.author Cucinotta, T en
dc.contributor.author Varvarigou, T en
dc.date.accessioned 2014-03-01T01:37:19Z
dc.date.available 2014-03-01T01:37:19Z
dc.date.issued 2011 en
dc.identifier.issn 0164-1212 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/21495
dc.subject Artificial neural networks en
dc.subject Cloud computing en
dc.subject Genetic algorithms en
dc.subject Performance prediction en
dc.subject Real-time scheduling en
dc.subject Virtualization en
dc.subject.classification Computer Science, Software Engineering en
dc.subject.classification Computer Science, Theory & Methods en
dc.subject.other Artificial Neural Network en
dc.subject.other Black box method en
dc.subject.other Computing system en
dc.subject.other Critical parameter en
dc.subject.other Linear regression methods en
dc.subject.other Memory-sharing en
dc.subject.other Multicore architectures en
dc.subject.other Optimal allocation en
dc.subject.other Performance prediction en
dc.subject.other Physical nodes en
dc.subject.other Real time scheduling en
dc.subject.other Server consolidation en
dc.subject.other Virtual machines en
dc.subject.other Virtualizations en
dc.subject.other Cloud computing en
dc.subject.other Computer simulation en
dc.subject.other Couplings en
dc.subject.other Forecasting en
dc.subject.other Memory architecture en
dc.subject.other Optimization en
dc.subject.other Real time systems en
dc.subject.other Neural networks en
dc.title The effects of scheduling, workload type and consolidation scenarios on virtual machine performance and their prediction through optimized artificial neural networks en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.jss.2011.04.013 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.jss.2011.04.013 en
heal.language English en
heal.publicationDate 2011 en
heal.abstract The aim of this paper is to study and predict the effect of a number of critical parameters on the performance of virtual machines (VMs). These parameters include allocation percentages, real-time scheduling decisions and co-placement of VMs when these are deployed concurrently on the same physical node, as dictated by the server consolidation trend and the recent advances in the Cloud computing systems. Different combinations of VM workload types are investigated in relation to the aforementioned factors in order to find the optimal allocation strategies. What is more, different levels of memory sharing are applied, based on the coupling of VMs to cores on a multi-core architecture. For all the aforementioned cases, the effect on the score of specific benchmarks running inside the VMs is measured. Finally, a black box method based on genetically optimized artificial neural networks is inserted in order to investigate the degradation prediction ability a priori of the execution and is compared to the linear regression method. (C) 2011 Elsevier Inc. All rights reserved. en
heal.publisher ELSEVIER SCIENCE INC en
heal.journalName Journal of Systems and Software en
dc.identifier.doi 10.1016/j.jss.2011.04.013 en
dc.identifier.isi ISI:000292227600002 en
dc.identifier.volume 84 en
dc.identifier.issue 8 en
dc.identifier.spage 1270 en
dc.identifier.epage 1291 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής