dc.contributor.author |
Kouloumentas, C |
en |
dc.date.accessioned |
2014-03-01T01:37:28Z |
|
dc.date.available |
2014-03-01T01:37:28Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.issn |
0030-4018 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/21507 |
|
dc.subject |
Dispersion management |
en |
dc.subject |
Multi-wavelength regeneration |
en |
dc.subject |
Nonlinear fibers |
en |
dc.subject |
Self-phase modulation (SPM) |
en |
dc.subject.classification |
Optics |
en |
dc.subject.other |
40 Gb/s |
en |
dc.subject.other |
Channel spacings |
en |
dc.subject.other |
Design Methodology |
en |
dc.subject.other |
Dispersion compensating fibers |
en |
dc.subject.other |
Dispersion management |
en |
dc.subject.other |
Metropolitan networks |
en |
dc.subject.other |
Multi-wavelength regeneration |
en |
dc.subject.other |
Multiwavelength |
en |
dc.subject.other |
Non-linear fiber |
en |
dc.subject.other |
Nonlinear interactions |
en |
dc.subject.other |
Proof of principles |
en |
dc.subject.other |
Q-factor improvement |
en |
dc.subject.other |
Specific design |
en |
dc.subject.other |
Strong dispersion |
en |
dc.subject.other |
WDM channels |
en |
dc.subject.other |
Computer simulation |
en |
dc.subject.other |
Design |
en |
dc.subject.other |
Dispersion compensation |
en |
dc.subject.other |
Dispersions |
en |
dc.subject.other |
Fibers |
en |
dc.subject.other |
Multiplexing equipment |
en |
dc.subject.other |
Optical waveguides |
en |
dc.subject.other |
Self phase modulation |
en |
dc.subject.other |
Single mode fibers |
en |
dc.subject.other |
Regenerators |
en |
dc.title |
Theoretical analysis of the all-fiberized, dispersion-managed regenerator for simultaneous processing of WDM channels |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.optcom.2011.05.034 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.optcom.2011.05.034 |
en |
heal.language |
English |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
The concept of the all-fiberized multi-wavelength regenerator is analyzed, and the design methodology for operation at 40 Gb/s is presented. The specific methodology has been applied in the past for the experimental proof-of-principle of the technique, but it has never been reported in detail. The regenerator is based on a strong dispersion map that is implemented using alternating dispersion compensating fibers (DCF) and single-mode fibers (SMF), and minimizes the nonlinear interaction between the wavelength-division multiplexing (WDM) channels. The optimized regenerator design with + 0.86 ps/nm/km average dispersion of the nonlinear fiber section is further investigated. The specific design is capable of simultaneously processing five WDM channels with 800 GHz channel spacing and providing Q-factor improvement higher than 1 dB for each channel. The cascadeability of the regenerator is also indicated using a 6-node metropolitan network simulation model. (C) 2011 Elsevier B.V. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCIENCE BV |
en |
heal.journalName |
Optics Communications |
en |
dc.identifier.doi |
10.1016/j.optcom.2011.05.034 |
en |
dc.identifier.isi |
ISI:000294374700020 |
en |
dc.identifier.volume |
284 |
en |
dc.identifier.issue |
19 |
en |
dc.identifier.spage |
4340 |
en |
dc.identifier.epage |
4349 |
en |