dc.contributor.author |
Lazou, A |
en |
dc.contributor.author |
Krokida, M |
en |
dc.date.accessioned |
2014-03-01T01:37:28Z |
|
dc.date.available |
2014-03-01T01:37:28Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.issn |
0308-8146 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/21508 |
|
dc.subject |
Amylose-lipid complex |
en |
dc.subject |
DSC |
en |
dc.subject |
Extrusion cooking |
en |
dc.subject |
Glass transition |
en |
dc.subject |
Plasticisation |
en |
dc.subject |
Sorption isotherms |
en |
dc.subject.classification |
Chemistry, Applied |
en |
dc.subject.classification |
Food Science & Technology |
en |
dc.subject.classification |
Nutrition & Dietetics |
en |
dc.subject.other |
Amylose-lipid complex |
en |
dc.subject.other |
Corn flour |
en |
dc.subject.other |
DSC |
en |
dc.subject.other |
Endothermic peaks |
en |
dc.subject.other |
Experimental data |
en |
dc.subject.other |
Extrudates |
en |
dc.subject.other |
Extruded snacks |
en |
dc.subject.other |
Extrusion process |
en |
dc.subject.other |
Extrusion temperatures |
en |
dc.subject.other |
Feed-rates |
en |
dc.subject.other |
GAB model |
en |
dc.subject.other |
Glass transition temperature |
en |
dc.subject.other |
Gordon-Taylor equation |
en |
dc.subject.other |
Moisture contents |
en |
dc.subject.other |
Plasticisation |
en |
dc.subject.other |
Plasticisers |
en |
dc.subject.other |
Room temperature |
en |
dc.subject.other |
Sorption isotherms |
en |
dc.subject.other |
Specific mechanical energy |
en |
dc.subject.other |
Thermal characterisation |
en |
dc.subject.other |
Water Act |
en |
dc.subject.other |
Adsorption isotherms |
en |
dc.subject.other |
Extrusion |
en |
dc.subject.other |
Glass |
en |
dc.subject.other |
Moisture |
en |
dc.subject.other |
Moisture determination |
en |
dc.subject.other |
Plasticizers |
en |
dc.subject.other |
Sorption |
en |
dc.subject.other |
Temperature |
en |
dc.subject.other |
Glass transition |
en |
dc.subject.other |
amylose |
en |
dc.subject.other |
plasticizer |
en |
dc.subject.other |
water |
en |
dc.subject.other |
article |
en |
dc.subject.other |
cooking |
en |
dc.subject.other |
corn |
en |
dc.subject.other |
differential scanning calorimetry |
en |
dc.subject.other |
fast food |
en |
dc.subject.other |
food extrusion |
en |
dc.subject.other |
glass transition temperature |
en |
dc.subject.other |
isotherm |
en |
dc.subject.other |
lentil |
en |
dc.subject.other |
melting point |
en |
dc.subject.other |
moisture |
en |
dc.subject.other |
phase transition |
en |
dc.subject.other |
room temperature |
en |
dc.subject.other |
thermal analysis |
en |
dc.subject.other |
Lens culinaris |
en |
dc.subject.other |
Zea mays |
en |
dc.title |
Thermal characterisation of corn-lentil extruded snacks |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.foodchem.2011.02.029 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.foodchem.2011.02.029 |
en |
heal.language |
English |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
The phase transitions of extruded corn-lentil snacks were investigated using different extrusion process conditions, which were feed rate (2.52-6.84 kg/h), extrusion temperature (170-230 degrees C) and feed moisture content (13-19% wb). Lentil flour-corn flour mixtures were used at ratios ranging from 10-50%. Extrusion temperature, feed rate and feed moisture content decreased the specific mechanical energy during extrusion cooking. The sorption isotherm at room temperature of corn-lentil snacks was described successfully by the GAB model. The glass transition temperature of extrudates (midpoint of the specific heat shift) increased with feed rate, extrusion temperature, and lentil to corn ratio. Water acts as a plasticiser on extrudates, depressing their glass transition temperature. The Gordon-Taylor equation was used for the plasticisation description and had a good fit with the experimental data. Generally, as the moisture content decreased, the sharpness of glass transition also decreased. The formation of amylose-lipid complexes was confirmed by the presence of an endothermic peak. (C) 2011 Elsevier Ltd. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCI LTD |
en |
heal.journalName |
Food Chemistry |
en |
dc.identifier.doi |
10.1016/j.foodchem.2011.02.029 |
en |
dc.identifier.isi |
ISI:000289830000029 |
en |
dc.identifier.volume |
127 |
en |
dc.identifier.issue |
4 |
en |
dc.identifier.spage |
1625 |
en |
dc.identifier.epage |
1633 |
en |