dc.contributor.author |
Vlahogianni, EI |
en |
dc.contributor.author |
Golias, JC |
en |
dc.contributor.author |
Ziomas, IC |
en |
dc.date.accessioned |
2014-03-01T01:37:30Z |
|
dc.date.available |
2014-03-01T01:37:30Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.issn |
1361-9209 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/21525 |
|
dc.subject |
Modular prediction genetic algorithms |
en |
dc.subject |
Nitrogen dioxide prediction |
en |
dc.subject |
Temporal neural networks |
en |
dc.subject.classification |
Environmental Studies |
en |
dc.subject.classification |
Transportation |
en |
dc.subject.classification |
Transportation Science & Technology |
en |
dc.subject.other |
Metropolitan area |
en |
dc.subject.other |
Modular neural networks |
en |
dc.subject.other |
Modular prediction genetic algorithms |
en |
dc.subject.other |
Nitrogen dioxide prediction |
en |
dc.subject.other |
Nitrogen dioxides |
en |
dc.subject.other |
Prediction horizon |
en |
dc.subject.other |
Static neural networks |
en |
dc.subject.other |
Temporal neural networks |
en |
dc.subject.other |
Time windows |
en |
dc.subject.other |
Traffic flow |
en |
dc.subject.other |
Traffic information |
en |
dc.subject.other |
Traffic volumes |
en |
dc.subject.other |
Travel speed |
en |
dc.subject.other |
Urban freeways |
en |
dc.subject.other |
Air pollution |
en |
dc.subject.other |
Biology |
en |
dc.subject.other |
Chemical sensors |
en |
dc.subject.other |
Forecasting |
en |
dc.subject.other |
Genetic algorithms |
en |
dc.subject.other |
Nitrogen |
en |
dc.subject.other |
Nitrogen oxides |
en |
dc.subject.other |
Ozone |
en |
dc.subject.other |
Traffic control |
en |
dc.subject.other |
Traffic surveys |
en |
dc.subject.other |
Neural networks |
en |
dc.subject.other |
artificial neural network |
en |
dc.subject.other |
genetic algorithm |
en |
dc.subject.other |
metropolitan area |
en |
dc.subject.other |
nitrogen dioxide |
en |
dc.subject.other |
prediction |
en |
dc.subject.other |
traffic congestion |
en |
dc.subject.other |
travel behavior |
en |
dc.subject.other |
urban transport |
en |
dc.title |
Traffic flow evolution effects to nitrogen dioxides predictability in large metropolitan areas |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.trd.2011.01.001 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.trd.2011.01.001 |
en |
heal.language |
English |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
A genetically-optimized modular neural network is used to predict the temporal of nitrogen dioxides in a highly congested urban freeway by integrating, in a single prediction shell, information on past values of nitrogen dioxide and ozone, as well as traffic volume, travel speed and occupancy. Results indicate that the approach is more accurate for one and multiple steps ahead predictions when compared to a simple static neural network. They also indicate that the integration of traffic information in the process of prediction improves to some extent the predictability of nitrogen dioxides evolution. It is also shown that the look-back time window for pollutants-related data increases with relation to the increase of the prediction horizon. (C) 2011 Elsevier Ltd. All rights reserved. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
Transportation Research Part D: Transport and Environment |
en |
dc.identifier.doi |
10.1016/j.trd.2011.01.001 |
en |
dc.identifier.isi |
ISI:000289181300001 |
en |
dc.identifier.volume |
16 |
en |
dc.identifier.issue |
4 |
en |
dc.identifier.spage |
273 |
en |
dc.identifier.epage |
280 |
en |