HEAL DSpace

Traffic flow evolution effects to nitrogen dioxides predictability in large metropolitan areas

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Vlahogianni, EI en
dc.contributor.author Golias, JC en
dc.contributor.author Ziomas, IC en
dc.date.accessioned 2014-03-01T01:37:30Z
dc.date.available 2014-03-01T01:37:30Z
dc.date.issued 2011 en
dc.identifier.issn 1361-9209 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/21525
dc.subject Modular prediction genetic algorithms en
dc.subject Nitrogen dioxide prediction en
dc.subject Temporal neural networks en
dc.subject.classification Environmental Studies en
dc.subject.classification Transportation en
dc.subject.classification Transportation Science & Technology en
dc.subject.other Metropolitan area en
dc.subject.other Modular neural networks en
dc.subject.other Modular prediction genetic algorithms en
dc.subject.other Nitrogen dioxide prediction en
dc.subject.other Nitrogen dioxides en
dc.subject.other Prediction horizon en
dc.subject.other Static neural networks en
dc.subject.other Temporal neural networks en
dc.subject.other Time windows en
dc.subject.other Traffic flow en
dc.subject.other Traffic information en
dc.subject.other Traffic volumes en
dc.subject.other Travel speed en
dc.subject.other Urban freeways en
dc.subject.other Air pollution en
dc.subject.other Biology en
dc.subject.other Chemical sensors en
dc.subject.other Forecasting en
dc.subject.other Genetic algorithms en
dc.subject.other Nitrogen en
dc.subject.other Nitrogen oxides en
dc.subject.other Ozone en
dc.subject.other Traffic control en
dc.subject.other Traffic surveys en
dc.subject.other Neural networks en
dc.subject.other artificial neural network en
dc.subject.other genetic algorithm en
dc.subject.other metropolitan area en
dc.subject.other nitrogen dioxide en
dc.subject.other prediction en
dc.subject.other traffic congestion en
dc.subject.other travel behavior en
dc.subject.other urban transport en
dc.title Traffic flow evolution effects to nitrogen dioxides predictability in large metropolitan areas en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.trd.2011.01.001 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.trd.2011.01.001 en
heal.language English en
heal.publicationDate 2011 en
heal.abstract A genetically-optimized modular neural network is used to predict the temporal of nitrogen dioxides in a highly congested urban freeway by integrating, in a single prediction shell, information on past values of nitrogen dioxide and ozone, as well as traffic volume, travel speed and occupancy. Results indicate that the approach is more accurate for one and multiple steps ahead predictions when compared to a simple static neural network. They also indicate that the integration of traffic information in the process of prediction improves to some extent the predictability of nitrogen dioxides evolution. It is also shown that the look-back time window for pollutants-related data increases with relation to the increase of the prediction horizon. (C) 2011 Elsevier Ltd. All rights reserved. en
heal.publisher PERGAMON-ELSEVIER SCIENCE LTD en
heal.journalName Transportation Research Part D: Transport and Environment en
dc.identifier.doi 10.1016/j.trd.2011.01.001 en
dc.identifier.isi ISI:000289181300001 en
dc.identifier.volume 16 en
dc.identifier.issue 4 en
dc.identifier.spage 273 en
dc.identifier.epage 280 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής