HEAL DSpace

Using the idea of expanded core for the exact solution of bi-objective multi-dimensional knapsack problems

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Mavrotas, G en
dc.contributor.author Figueira, JR en
dc.contributor.author Antoniadis, A en
dc.date.accessioned 2014-03-01T01:37:31Z
dc.date.available 2014-03-01T01:37:31Z
dc.date.issued 2011 en
dc.identifier.issn 0925-5001 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/21538
dc.subject Core en
dc.subject Exact algorithm en
dc.subject Knapsack problem en
dc.subject Multi-objective programming en
dc.subject.classification Operations Research & Management Science en
dc.subject.classification Mathematics, Applied en
dc.subject.other Branch-and-bound algorithms en
dc.subject.other Core en
dc.subject.other Core problems en
dc.subject.other Divide and conquer en
dc.subject.other Exact algorithms en
dc.subject.other Exact solution en
dc.subject.other Knapsack problems en
dc.subject.other Multi objective en
dc.subject.other Multidimensional knapsack problems en
dc.subject.other Multiobjective programming en
dc.subject.other Pareto optimal solutions en
dc.subject.other Pareto set en
dc.subject.other Single objective en
dc.subject.other Sub-problems en
dc.subject.other Approximation algorithms en
dc.subject.other Integer programming en
dc.subject.other Linear programming en
dc.subject.other Multiobjective optimization en
dc.subject.other Pareto principle en
dc.subject.other Problem solving en
dc.title Using the idea of expanded core for the exact solution of bi-objective multi-dimensional knapsack problems en
heal.type journalArticle en
heal.identifier.primary 10.1007/s10898-010-9552-6 en
heal.identifier.secondary http://dx.doi.org/10.1007/s10898-010-9552-6 en
heal.language English en
heal.publicationDate 2011 en
heal.abstract We propose a methodology for obtaining the exact Pareto set of Bi-Objective Multi-Dimensional Knapsack Problems, exploiting the concept of core expansion. The core concept is effectively used in single objective multi-dimensional knapsack problems and it is based on the ""divide and conquer"" principle. Namely, instead of solving one problem with n variables we solve several sub-problems with a fraction of n variables (core variables). In the multi-objective case, the general idea is that we start from an approximation of the Pareto set (produced with theMulti-Criteria Branch and Bound algorithm, using also the core concept) and we enrich this approximation iteratively. Every time an approximation is generated, we solve a series of appropriate single objective Integer Programming (IP) problems exploring the criterion space for possibly undiscovered, new Pareto Optimal Solutions (POS). If one or more new POS are found, we appropriately expand the already found cores and solve the new core problems. This process is repeated until no new POS are found from the IP problems. The paper includes an educational example and some experiments. © Springer Science+Business Media, LLC. 2010. en
heal.publisher SPRINGER en
heal.journalName Journal of Global Optimization en
dc.identifier.doi 10.1007/s10898-010-9552-6 en
dc.identifier.isi ISI:000288456900004 en
dc.identifier.volume 49 en
dc.identifier.issue 4 en
dc.identifier.spage 589 en
dc.identifier.epage 606 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής