HEAL DSpace

Variational formulation on effective elastic moduli of randomly cracked solids

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Xu, XF en
dc.contributor.author Stefanou, G en
dc.date.accessioned 2014-03-01T01:37:31Z
dc.date.available 2014-03-01T01:37:31Z
dc.date.issued 2011 en
dc.identifier.issn 1543-1649 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/21542
dc.subject Green-function-based multiscale method en
dc.subject Morphological crack model en
dc.subject Randomly cracked solids en
dc.subject Variational bounds en
dc.subject.classification Engineering, Multidisciplinary en
dc.subject.classification Mathematics, Interdisciplinary Applications en
dc.subject.other Approximation methods en
dc.subject.other Cracked media en
dc.subject.other Cracked solid en
dc.subject.other Effective elastic modulus en
dc.subject.other Hashin-shtrikman en
dc.subject.other Inhomogeneous media en
dc.subject.other Mechanics models en
dc.subject.other Morphological crack model en
dc.subject.other Morphological model en
dc.subject.other Multiscale method en
dc.subject.other Random orientations en
dc.subject.other Variational bounds en
dc.subject.other Variational formulation en
dc.subject.other Variational principles en
dc.subject.other Approximation theory en
dc.subject.other Cracks en
dc.subject.other Elastic moduli en
dc.subject.other Mechanics en
dc.subject.other Morphology en
dc.subject.other Stochastic models en
dc.subject.other Variational techniques en
dc.subject.other Stress corrosion cracking en
dc.title Variational formulation on effective elastic moduli of randomly cracked solids en
heal.type journalArticle en
heal.identifier.primary 10.1615/IntJMultCompEng.v9.i3.60 en
heal.identifier.secondary http://dx.doi.org/10.1615/IntJMultCompEng.v9.i3.60 en
heal.language English en
heal.publicationDate 2011 en
heal.abstract Formulation of variational bounds for properties of inhomogeneous media constitutes one of the most fundamental parts of theoretical and applied mechanics. The merit of rigorously derived bounds lies in them not only providing verification for approximation methods, but more importantly, serving as the foundation for building up mechanics models. A direct application of classical micromechanics theories to random cracked media, however, faces a problem of singularity due to a zero volume fraction of cracks. In this study a morphological model of random cracks is first established. Based on the morphological model, a variational formulation of randomly cracked solids is developed by applying the stochastic Hashin-Shtrikman variational principle formulated by Xu (J. Eng. Mech., vol. 135, pp. 1180- 1188, 2009) and the Green-function-based method by Xu et al. (Comput. Struct., vol. 87, pp. 1416-1426, 2009). The upper-bound expressions are explicitly given for penny-shaped and slit-like random cracks with parallel and random orientations. Unlike previous works, no special underlying morphology is assumed in the variational formulation, and the bounds obtained are applicable to many realistic non-self-similar morphologies. © 2011 by Begell House, Inc. en
heal.publisher BEGELL HOUSE INC en
heal.journalName International Journal for Multiscale Computational Engineering en
dc.identifier.doi 10.1615/IntJMultCompEng.v9.i3.60 en
dc.identifier.isi ISI:000296217900006 en
dc.identifier.volume 9 en
dc.identifier.issue 3 en
dc.identifier.spage 347 en
dc.identifier.epage 363 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής