dc.contributor.author |
Xu, XF |
en |
dc.contributor.author |
Stefanou, G |
en |
dc.date.accessioned |
2014-03-01T01:37:31Z |
|
dc.date.available |
2014-03-01T01:37:31Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.issn |
1543-1649 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/21542 |
|
dc.subject |
Green-function-based multiscale method |
en |
dc.subject |
Morphological crack model |
en |
dc.subject |
Randomly cracked solids |
en |
dc.subject |
Variational bounds |
en |
dc.subject.classification |
Engineering, Multidisciplinary |
en |
dc.subject.classification |
Mathematics, Interdisciplinary Applications |
en |
dc.subject.other |
Approximation methods |
en |
dc.subject.other |
Cracked media |
en |
dc.subject.other |
Cracked solid |
en |
dc.subject.other |
Effective elastic modulus |
en |
dc.subject.other |
Hashin-shtrikman |
en |
dc.subject.other |
Inhomogeneous media |
en |
dc.subject.other |
Mechanics models |
en |
dc.subject.other |
Morphological crack model |
en |
dc.subject.other |
Morphological model |
en |
dc.subject.other |
Multiscale method |
en |
dc.subject.other |
Random orientations |
en |
dc.subject.other |
Variational bounds |
en |
dc.subject.other |
Variational formulation |
en |
dc.subject.other |
Variational principles |
en |
dc.subject.other |
Approximation theory |
en |
dc.subject.other |
Cracks |
en |
dc.subject.other |
Elastic moduli |
en |
dc.subject.other |
Mechanics |
en |
dc.subject.other |
Morphology |
en |
dc.subject.other |
Stochastic models |
en |
dc.subject.other |
Variational techniques |
en |
dc.subject.other |
Stress corrosion cracking |
en |
dc.title |
Variational formulation on effective elastic moduli of randomly cracked solids |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1615/IntJMultCompEng.v9.i3.60 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1615/IntJMultCompEng.v9.i3.60 |
en |
heal.language |
English |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
Formulation of variational bounds for properties of inhomogeneous media constitutes one of the most fundamental parts of theoretical and applied mechanics. The merit of rigorously derived bounds lies in them not only providing verification for approximation methods, but more importantly, serving as the foundation for building up mechanics models. A direct application of classical micromechanics theories to random cracked media, however, faces a problem of singularity due to a zero volume fraction of cracks. In this study a morphological model of random cracks is first established. Based on the morphological model, a variational formulation of randomly cracked solids is developed by applying the stochastic Hashin-Shtrikman variational principle formulated by Xu (J. Eng. Mech., vol. 135, pp. 1180- 1188, 2009) and the Green-function-based method by Xu et al. (Comput. Struct., vol. 87, pp. 1416-1426, 2009). The upper-bound expressions are explicitly given for penny-shaped and slit-like random cracks with parallel and random orientations. Unlike previous works, no special underlying morphology is assumed in the variational formulation, and the bounds obtained are applicable to many realistic non-self-similar morphologies. © 2011 by Begell House, Inc. |
en |
heal.publisher |
BEGELL HOUSE INC |
en |
heal.journalName |
International Journal for Multiscale Computational Engineering |
en |
dc.identifier.doi |
10.1615/IntJMultCompEng.v9.i3.60 |
en |
dc.identifier.isi |
ISI:000296217900006 |
en |
dc.identifier.volume |
9 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
347 |
en |
dc.identifier.epage |
363 |
en |