HEAL DSpace

VIRaL: Visual image retrieval and localization

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Kalantidis, Y en
dc.contributor.author Tolias, G en
dc.contributor.author Avrithis, Y en
dc.contributor.author Phinikettos, M en
dc.contributor.author Spyrou, E en
dc.contributor.author Mylonas, P en
dc.contributor.author Kollias, S en
dc.date.accessioned 2014-03-01T01:37:32Z
dc.date.available 2014-03-01T01:37:32Z
dc.date.issued 2011 en
dc.identifier.issn 1380-7501 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/21545
dc.subject Geotagging en
dc.subject Image clustering en
dc.subject Image localization en
dc.subject Image retrieval en
dc.subject Landmark recognition en
dc.subject Location recognition en
dc.subject Sub-linear indexing en
dc.subject.classification Computer Science, Information Systems en
dc.subject.classification Computer Science, Software Engineering en
dc.subject.classification Computer Science, Theory & Methods en
dc.subject.classification Engineering, Electrical & Electronic en
dc.subject.other Geotagging en
dc.subject.other Image clustering en
dc.subject.other Image localization en
dc.subject.other Landmark recognition en
dc.subject.other Location recognition en
dc.subject.other Sub-linear indexing en
dc.subject.other Data processing en
dc.subject.other Image retrieval en
dc.subject.other Metadata en
dc.subject.other Mining en
dc.subject.other Indexing (of information) en
dc.title VIRaL: Visual image retrieval and localization en
heal.type journalArticle en
heal.identifier.primary 10.1007/s11042-010-0651-7 en
heal.identifier.secondary http://dx.doi.org/10.1007/s11042-010-0651-7 en
heal.language English en
heal.publicationDate 2011 en
heal.abstract New applications are emerging every day exploiting the huge data volume in community photo collections. Most focus on popular subsets, e.g., images containing landmarks or associated to Wikipedia articles. In this work we are concerned with the problem of accurately finding the location where a photo is taken without needing any metadata, that is, solely by its visual content. We also recognize landmarks where applicable, automatically linking them to Wikipedia. We show that the time is right for automating the geo-tagging process, and we show how this can work at large scale. In doing so, we do exploit redundancy of content in popular locations-but unlike most existing solutions, we do not restrict to landmarks. In other words, we can compactly represent the visual content of all thousands of images depicting e.g., the Parthenon and still retrieve any single, isolated, non-landmark image like a house or a graffiti on a wall. Starting from an existing, geo-tagged dataset, we cluster images into sets of different views of the same scene. This is a very efficient, scalable, and fully automated mining process. We then align all views in a set to one reference image and construct a 2D scene map. Our indexing scheme operates directly on scene maps. We evaluate our solution on a challenging one million urban image dataset and provide public access to our service through our online application, VIRaL. © 2010 Springer Science+Business Media, LLC. en
heal.publisher SPRINGER en
heal.journalName Multimedia Tools and Applications en
dc.identifier.doi 10.1007/s11042-010-0651-7 en
dc.identifier.isi ISI:000286472300007 en
dc.identifier.volume 51 en
dc.identifier.issue 2 en
dc.identifier.spage 555 en
dc.identifier.epage 592 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής